A comparison of clinical development pathways to advance tuberculosis regimen development.

V Chang, P P J Phillips, M Z Imperial, P Nahid, R M Savic
Author Information
  1. V Chang: Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA. vincent.chang@ucsf.edu. ORCID
  2. P P J Phillips: UCSF Center for Tuberculosis, University of California San Francisco, San Francisco, CA, USA.
  3. M Z Imperial: Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
  4. P Nahid: UCSF Center for Tuberculosis, University of California San Francisco, San Francisco, CA, USA.
  5. R M Savic: Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.

Abstract

BACKGROUND: Current tuberculosis (TB) regimen development pathways are slow and in urgent need of innovation. We investigated novel phase IIc and seamless phase II/III trials utilizing multi-arm multi-stage and Bayesian response adaptive randomization trial designs to select promising combination regimens in a platform adaptive trial.
METHODS: Clinical trial simulation tools were built using predictive and validated parametric survival models of time to culture conversion (intermediate endpoint) and time to TB-related unfavorable outcome (final endpoint). This integrative clinical trial simulation tool was used to explore and optimize design parameters for aforementioned trial designs.
RESULTS: Both multi-arm multi-stage and Bayesian response adaptive randomization designs were able to reliably graduate desirable regimens in ≥ 95% of trial simulations and reliably stop suboptimal regimens in ≥ 90% of trial simulations. Overall, adaptive phase IIc designs reduced patient enrollment by 17% and 25% with multi-arm multi-stage and Bayesian response adaptive randomization designs respectively compared to the conventional sequential approach, while seamless designs reduced study duration by 2.6 and 3.5 years respectively (typically ≥ 8.5 years for standard sequential approach).
CONCLUSIONS: In this study, we demonstrate that adaptive trial designs are suitable for TB regimen development, and we provide plausible design parameters for a platform adaptive trial. Ultimately trial design and specification of design parameters will depend on clinical trial objectives. To support decision-making for clinical trial designs in contemporary TB regimen development, we provide a flexible clinical trial simulation tool that can be used to explore and optimize design features and parameters.

Keywords

References

  1. Int J Tuberc Lung Dis. 2015 Jul;19(7):780-6 [PMID: 26056101]
  2. N Engl J Med. 2020 Mar 5;382(10):893-902 [PMID: 32130813]
  3. Stat Med. 2014 Jun 15;33(13):2206-21 [PMID: 24421053]
  4. PLoS Med. 2019 Mar 22;16(3):e1002769 [PMID: 30901322]
  5. PLoS Med. 2019 Mar 22;16(3):e1002767 [PMID: 30901331]
  6. Am J Respir Crit Care Med. 2021 Nov 1;204(9):1086-1096 [PMID: 34346856]
  7. Clin Infect Dis. 2017 Jul 1;65(1):46-54 [PMID: 28402396]
  8. Clin Trials. 2008;5(1):14-22 [PMID: 18283075]
  9. Int J Tuberc Lung Dis. 2015 Jun;19(6):626-34 [PMID: 25946350]
  10. N Engl J Med. 2021 May 6;384(18):1705-1718 [PMID: 33951360]
  11. Trials. 2020 Jun 17;21(1):539 [PMID: 32552852]
  12. Clin Pharmacol Ther. 2009 Jul;86(1):97-100 [PMID: 19440188]
  13. Am Heart J. 2008 Jan;155(1):33-41 [PMID: 18082486]
  14. Clin Trials. 2020 Jun;17(3):273-284 [PMID: 32063029]
  15. Nat Med. 2018 Nov;24(11):1708-1715 [PMID: 30397355]
  16. JAMA. 2010 Mar 24;303(12):1180-7 [PMID: 20332404]
  17. Lancet Infect Dis. 2017 Jan;17(1):39-49 [PMID: 28100438]
  18. Clin Cancer Res. 2013 Jun 1;19(11):2817-23 [PMID: 23470967]
  19. Int J Tuberc Lung Dis. 2016 Dec 1;20(12):8-12 [PMID: 28240566]
  20. Int J Tuberc Lung Dis. 2010 Feb;14(2):241-2 [PMID: 20074418]
  21. Clin Trials. 2018 Oct;15(5):477-488 [PMID: 29871495]
  22. Clin Trials. 2017 Feb;14(1):17-28 [PMID: 27559021]
  23. N Engl J Med. 2020 Mar 5;382(10):959-960 [PMID: 32130819]
  24. BMC Med. 2016 Mar 23;14:51 [PMID: 27004726]
  25. Biom J. 2006 Aug;48(4):591-7; discussion 613-22 [PMID: 16972710]
  26. Contemp Clin Trials. 2017 Mar;54:48-59 [PMID: 28089763]
  27. Lancet Respir Med. 2019 Dec;7(12):1048-1058 [PMID: 31732485]
  28. BMC Med. 2019 Jun 21;17(1):115 [PMID: 31221165]
  29. N Engl J Med. 2014 Aug 21;371(8):689-91 [PMID: 25140952]
  30. J Infect Dis. 2012 May 15;205 Suppl 2:S250-7 [PMID: 22448027]

Grants

  1. OPP1776259/Bill and Melinda Gates Foundation

MeSH Term

Humans
Bayes Theorem
Random Allocation
Research Design
Tuberculosis
Computer Simulation

Word Cloud

Created with Highcharts 10.0.0trialdesignsadaptivedevelopmentclinicaldesignregimenparametersTBphasemulti-armmulti-stageBayesianresponserandomizationregimensClinicalsimulationtuberculosispathwaysIIcseamlessplatformtimeendpointtoolusedexploreoptimizereliablysimulationsreducedrespectivelysequentialapproachstudy5 yearsprovideBACKGROUND:CurrentslowurgentneedinnovationinvestigatednovelII/IIItrialsutilizingselectpromisingcombinationMETHODS:toolsbuiltusingpredictivevalidatedparametricsurvivalmodelscultureconversionintermediateTB-relatedunfavorableoutcomefinalintegrativeaforementionedRESULTS:ablegraduatedesirablein ≥ 95%stopsuboptimalin ≥ 90%Overallpatientenrollment17%25%comparedconventionalduration263typically ≥ 8standardCONCLUSIONS:demonstratesuitableplausibleUltimatelyspecificationwilldependobjectivessupportdecision-makingcontemporaryflexiblecanfeaturescomparisonadvanceAdaptiveTrialsTrialDesignTuberculosis

Similar Articles

Cited By