A Review of the Effects of Puerarin on Glucose and Lipid Metabolism in Metabolic Syndrome: Mechanisms and Opportunities.

Xiaoxuan Jing, Jingxuan Zhou, Nanhai Zhang, Liang Zhao, Shiran Wang, Liebing Zhang, Feng Zhou
Author Information
  1. Xiaoxuan Jing: Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
  2. Jingxuan Zhou: Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
  3. Nanhai Zhang: Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. ORCID
  4. Liang Zhao: Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China. ORCID
  5. Shiran Wang: Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
  6. Liebing Zhang: Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
  7. Feng Zhou: Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. ORCID

Abstract

Chronic diseases, including metabolic syndrome related to sugar and lipid metabolic disorders, are the leading causes of premature death around the world. Novel treatment strategies without undesirable effects are urgently needed. As a natural functional ingredient, puerarin is a promising alternative for the treatment of sugar and lipid metabolic disorders. However, the applications of puerarin are limited due to its poor solubility and short half-life. Various drug delivery systems have been investigated to improve the bioavailability of puerarin. This review summarizes the mechanisms involved in the beneficial action of puerarin: suppressing the release of glucose and FFA; regulating the transport of glucose and fatty acids; acting on the PI3K-Akt and AMPK signaling pathways to decrease the synthesis of glucose and fatty acids; acting on the PPAR signaling pathway to promote β-oxidation; and improving insulin secretion and sensitivity. In addition, the preparation technologies used to improve the bioavailability of puerarin are also summarized in this review, in the hope of helping to promote the application of puerarin.

Keywords

References

  1. J Chromatogr B Analyt Technol Biomed Life Sci. 2013 Sep 15;935:70-4 [PMID: 23948238]
  2. Pharmaceutics. 2019 Jun 08;11(6): [PMID: 31181811]
  3. ACS Appl Mater Interfaces. 2019 Dec 4;11(48):45276-45289 [PMID: 31638771]
  4. Int J Mol Sci. 2018 Jul 21;19(7): [PMID: 30037103]
  5. Mol Nutr Food Res. 2013 Jan;57(1):48-57 [PMID: 23180627]
  6. J Food Biochem. 2020 Dec;44(12):e13536 [PMID: 33103275]
  7. Physiol Rev. 2006 Apr;86(2):465-514 [PMID: 16601267]
  8. Curr Opin Cell Biol. 2015 Apr;33:125-31 [PMID: 25703630]
  9. Biomedicines. 2021 Jul 06;9(7): [PMID: 34356847]
  10. Food Funct. 2021 Mar 21;12(6):2726-2740 [PMID: 33681875]
  11. Circ Res. 2019 Jan 18;124(2):328-350 [PMID: 30653440]
  12. Food Chem Toxicol. 2013 Oct;60:341-7 [PMID: 23927877]
  13. Diabetologia. 2016 Jun;59(6):1098-103 [PMID: 27048250]
  14. Eur J Pharmacol. 2018 Jan 5;818:115-123 [PMID: 29061371]
  15. J Nat Prod. 2003 Jun;66(6):788-92 [PMID: 12828463]
  16. BMB Rep. 2013 Dec;46(12):567-74 [PMID: 24238363]
  17. Physiol Rev. 2018 Oct 1;98(4):2133-2223 [PMID: 30067154]
  18. Pflugers Arch. 2020 Sep;472(9):1273-1298 [PMID: 32591906]
  19. Mol Pharm. 2019 Apr 1;16(4):1444-1455 [PMID: 30811206]
  20. Food Funct. 2019 May 22;10(5):2330-2339 [PMID: 31049523]
  21. Biochem Pharmacol. 2013 Aug 1;86(3):339-50 [PMID: 23747347]
  22. Diabetologia. 2016 Mar;59(3):426-35 [PMID: 26780750]
  23. World Health Organ Tech Rep Ser. 2003;916:i-viii, 1-149, backcover [PMID: 12768890]
  24. Drug Deliv. 2017 Nov;24(1):422-429 [PMID: 28165806]
  25. Int J Endocrinol. 2012;2012:983814 [PMID: 22675355]
  26. Phytother Res. 2014 Jul;28(7):961-75 [PMID: 24339367]
  27. Oxid Med Cell Longev. 2018 Jul 2;2018:4545321 [PMID: 30057680]
  28. Clin Nutr. 2021 Apr;40(4):1691-1698 [PMID: 33413911]
  29. Molecules. 2021 Nov 24;26(23): [PMID: 34885698]
  30. Drug Dev Ind Pharm. 2018 Aug;44(8):1336-1341 [PMID: 29513046]
  31. Am J Chin Med. 2018;46(8):1771-1789 [PMID: 30525896]
  32. Biofactors. 2010 Nov-Dec;36(6):459-67 [PMID: 20806284]
  33. Cell Mol Life Sci. 2018 Sep;75(18):3313-3327 [PMID: 29936596]
  34. Drug Deliv. 2019 Dec;26(1):860-869 [PMID: 31524010]
  35. Ann N Y Acad Sci. 2018 Jan;1411(1):21-35 [PMID: 28868790]
  36. AAPS PharmSciTech. 2020 Feb 13;21(3):90 [PMID: 32060654]
  37. J Anim Physiol Anim Nutr (Berl). 2008 Jun;92(3):272-83 [PMID: 18477307]
  38. ACS Omega. 2020 May 19;5(21):12251-12258 [PMID: 32548408]
  39. Evid Based Complement Alternat Med. 2021 Apr 16;2021:6633402 [PMID: 33953784]
  40. Chin J Nat Med. 2020 Nov;18(11):818-826 [PMID: 33308602]
  41. Nat Prod Res. 2019 Mar;33(5):755-758 [PMID: 29183150]
  42. Arterioscler Thromb Vasc Biol. 2005 Dec;25(12):2451-62 [PMID: 16166564]
  43. Korean J Intern Med. 2010 Jun;25(2):119-29 [PMID: 20526383]
  44. PLoS One. 2015 Mar 30;10(3):e0122925 [PMID: 25822741]
  45. Bioorg Chem. 2018 Apr;77:548-567 [PMID: 29475164]
  46. Eur J Pharmacol. 2010 Dec 15;649(1-3):398-402 [PMID: 20869961]
  47. Phytother Res. 2019 Sep;33(9):2347-2359 [PMID: 31273855]
  48. BMC Pharmacol Toxicol. 2018 May 25;19(1):25 [PMID: 29801513]
  49. Chin J Integr Med. 2012 Apr;18(4):293-8 [PMID: 22457141]
  50. J Biol Chem. 2002 Nov 22;277(47):45276-84 [PMID: 12228231]
  51. Am J Chin Med. 2019;47(5):933-957 [PMID: 31248265]
  52. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(6):563-77 [PMID: 20551594]
  53. Nutr Diabetes. 2018 Jan 12;8(1):1 [PMID: 29330446]
  54. Pharmaceutics. 2020 Mar 02;12(3): [PMID: 32131425]
  55. Carbohydr Polym. 2020 Nov 1;247:116710 [PMID: 32829838]
  56. Mol Endocrinol. 2016 Mar;30(3):361-71 [PMID: 26789107]
  57. Obes Rev. 2021 Feb;22 Suppl 1:e12944 [PMID: 31507064]
  58. Int J Mol Sci. 2020 Mar 05;21(5): [PMID: 32150819]
  59. Lipids Health Dis. 2012 Feb 23;11:30 [PMID: 22360800]
  60. J Biol Chem. 2019 Jul 26;294(30):11369-11381 [PMID: 31175156]
  61. JAMA. 2009 May 27;301(20):2129-40 [PMID: 19470990]
  62. Nutrients. 2021 Jan 06;13(1): [PMID: 33419065]
  63. Int J Mol Med. 2015 Mar;35(3):803-9 [PMID: 25605057]
  64. Phytomedicine. 2020 Apr 25;70:153222 [PMID: 32361558]
  65. Nutr Res Rev. 2021 Jun;34(1):64-77 [PMID: 32308181]
  66. Int J Nanomedicine. 2013;8:4415-26 [PMID: 24277986]
  67. Mol Biol Rep. 2019 Oct;46(5):4787-4797 [PMID: 31228042]
  68. Biomed Pharmacother. 2021 May;137:111325 [PMID: 33761593]
  69. AAPS PharmSciTech. 2021 Aug 12;22(6):217 [PMID: 34386832]
  70. Diabetologia. 2010 Jun;53(6):1019-32 [PMID: 20225132]
  71. Food Funct. 2014 May;5(5):944-50 [PMID: 24595557]
  72. Rev Endocr Metab Disord. 2021 Dec;22(4):973-986 [PMID: 33928491]
  73. Drug Deliv. 2015;22(4):516-21 [PMID: 24467620]
  74. Nutrients. 2017 Jan 04;9(1): [PMID: 28054981]
  75. Subcell Biochem. 2008;49:3-47 [PMID: 18751906]
  76. Nutrients. 2020 Oct 22;12(11): [PMID: 33105691]
  77. Annu Rev Physiol. 2013;75:155-79 [PMID: 22974438]
  78. Int J Pharm. 2020 Jan 5;573:118730 [PMID: 31705972]
  79. Molecules. 2019 Mar 08;24(5): [PMID: 30857163]
  80. Life Sci. 2005 Nov 4;77(25):3183-96 [PMID: 16005472]
  81. AAPS PharmSciTech. 2016 Dec;17(6):1336-1346 [PMID: 26694058]
  82. Chin Med. 2013 Aug 21;8(1):17 [PMID: 23965299]

Grants

  1. 202205410610167/Analysis of Active Components and Function Evaluation of Danxi Hongqu Rice Wines
  2. Grant no. CARS- 36/the National Dairy Industry and Technology System of China

Word Cloud

Created with Highcharts 10.0.0puerarinmetabolicsugarlipidbioavailabilityglucosesyndromedisorderstreatmentimprovereviewfattyacidsactingsignalingpromotemetabolismChronicdiseasesincludingrelatedleadingcausesprematuredeatharoundworldNovelstrategieswithoutundesirableeffectsurgentlyneedednaturalfunctionalingredientpromisingalternativeHoweverapplicationslimitedduepoorsolubilityshorthalf-lifeVariousdrugdeliverysystemsinvestigatedsummarizesmechanismsinvolvedbeneficialactionpuerarin:suppressingreleaseFFAregulatingtransportPI3K-AktAMPKpathwaysdecreasesynthesisPPARpathwayβ-oxidationimprovinginsulinsecretionsensitivityadditionpreparationtechnologiesusedalsosummarizedhopehelpingapplicationReviewEffectsPuerarinGlucoseLipidMetabolismMetabolicSyndrome:MechanismsOpportunities

Similar Articles

Cited By