Exploring the Mechanism of the Impact of Green Finance and Digital Economy on China's Green Total Factor Productivity.

Jianfeng Guo, Kai Zhang, Kecheng Liu
Author Information
  1. Jianfeng Guo: Henley Business School, University of Reading, Berkshire RG9 3AU, UK. ORCID
  2. Kai Zhang: Economics and Management School, Xi'an University of Posts and Telecommunications, Xi'an 710061, China.
  3. Kecheng Liu: Henley Business School, University of Reading, Berkshire RG9 3AU, UK.

Abstract

In the context of the "double cycle," promoting the development of a green economy is an important goal for China's high-quality economic development in the digital age. This paper uses data from 30 provinces (municipalities and autonomous regions) in China during the 2006-2019 period using the Compiled Green Finance Index (GF) and Digital Economy Index (DE). The interrelationship between green finance, digital economy and green total factor productivity (GTFP) is empirically tested by conducting multiple regressions on panel data from 2006-2019 to perform an empirical analysis. Based on this, further analysis was performed with the threshold model. This study found that green finance and digital economy can contribute well to green total factor productivity, but the combination of the two does not have a good effect on green total factor productivity. Further study found that the green finance and digital economy's contribution to green total factor productivity is mainly derived from technological progress. The regression results based on the panel threshold model show that the more underdeveloped the digital economy is in certain regions, the stronger the role of green finance in promoting efficiency improvement. Therefore, policymakers should formulate differentiated green financial policies according to the level of development of the digital economy and give play to the role of green finance and the digital economy in promoting green total factor productivity.

Keywords

References

  1. PLoS One. 2022 Apr 7;17(4):e0266674 [PMID: 35390096]
  2. Environ Sci Pollut Res Int. 2019 Jun;26(17):17305-17320 [PMID: 31020529]
  3. Environ Sci Pollut Res Int. 2022 Dec;29(60):90868-90886 [PMID: 35879636]
  4. Environ Sci Pollut Res Int. 2022 May;29(21):31235-31251 [PMID: 35001271]
  5. Int J Environ Res Public Health. 2022 Jun 20;19(12): [PMID: 35742786]
  6. J Environ Manage. 2022 Oct 15;320:115946 [PMID: 35961145]
  7. PLoS One. 2021 Sep 21;16(9):e0257365 [PMID: 34547019]
  8. Sci Total Environ. 2023 Jan 20;857(Pt 2):159428 [PMID: 36244487]
  9. Environ Manage. 2020 Dec;66(6):1059-1071 [PMID: 32793991]
  10. Environ Sci Pollut Res Int. 2022 Aug;29(40):60232-60243 [PMID: 35419686]
  11. Environ Sci Pollut Res Int. 2020 Jun;27(16):19915-19932 [PMID: 32232752]
  12. Environ Sci Pollut Res Int. 2022 Dec;29(60):89996-90010 [PMID: 35859239]
  13. Int J Environ Res Public Health. 2022 Oct 13;19(20): [PMID: 36293772]
  14. Environ Sci Pollut Res Int. 2022 Aug;29(38):57502-57515 [PMID: 35353311]
  15. Environ Sci Pollut Res Int. 2022 Sep 14;: [PMID: 36103065]
  16. Environ Sci Pollut Res Int. 2022 Aug 27;: [PMID: 36029445]
  17. Environ Sci Pollut Res Int. 2022 Dec;29(58):87858-87873 [PMID: 35821328]
  18. Environ Sci Pollut Res Int. 2022 Aug;29(37):55691-55706 [PMID: 35320474]
  19. Front Psychol. 2022 Sep 13;13:953506 [PMID: 36176807]
  20. Environ Sci Pollut Res Int. 2022 Jan;29(4):6125-6139 [PMID: 34448136]
  21. Environ Sci Pollut Res Int. 2022 Aug 3;: [PMID: 35921014]
  22. Environ Sci Pollut Res Int. 2022 Sep 28;: [PMID: 36169849]
  23. Int J Environ Res Public Health. 2022 Feb 19;19(4): [PMID: 35206606]
  24. Int J Environ Res Public Health. 2022 Jul 21;19(14): [PMID: 35886735]
  25. Environ Sci Pollut Res Int. 2021 Dec;28(46):65776-65790 [PMID: 34319519]
  26. Sci Rep. 2021 Aug 3;11(1):15717 [PMID: 34344984]
  27. Int J Environ Res Public Health. 2022 Jul 21;19(14): [PMID: 35886726]
  28. Int J Environ Res Public Health. 2022 Jan 06;19(2): [PMID: 35055471]
  29. J Environ Public Health. 2022 Sep 22;2022:2180532 [PMID: 36193389]
  30. Environ Sci Pollut Res Int. 2022 Nov;29(52):79497-79515 [PMID: 35713830]

MeSH Term

Economic Development
China
Fingers
Fiscal Policy
Efficiency

Word Cloud

Created with Highcharts 10.0.0greendigitaleconomyfinancetotalfactorproductivitypromotingdevelopmentGreenChina'sdataregions2006-2019FinanceIndexDigitalEconomypanelanalysisthresholdmodelstudyfoundrolecontext"doublecycle"importantgoalhigh-qualityeconomicagepaperuses30provincesmunicipalitiesautonomousChinaperiodusingCompiledGFDEinterrelationshipGTFPempiricallytestedconductingmultipleregressionsperformempiricalBasedperformedcancontributewellcombinationtwogoodeffecteconomy'scontributionmainlyderivedtechnologicalprogressregressionresultsbasedshowunderdevelopedcertainstrongerefficiencyimprovementThereforepolicymakersformulatedifferentiatedfinancialpoliciesaccordinglevelgiveplayExploringMechanismImpactTotalFactorProductivity

Similar Articles

Cited By (3)