MicroRNAs as the Sentinels of Redox and Hypertrophic Signalling.

Filip Kolodziej, Brian McDonagh, Nicole Burns, Katarzyna Goljanek-Whysall
Author Information
  1. Filip Kolodziej: Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland.
  2. Brian McDonagh: Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland.
  3. Nicole Burns: Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland.
  4. Katarzyna Goljanek-Whysall: Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland. ORCID

Abstract

Oxidative stress and inflammation are associated with skeletal muscle function decline with ageing or disease or inadequate exercise and/or poor diet. Paradoxically, reactive oxygen species and inflammatory cytokines are key for mounting the muscular and systemic adaptive responses to endurance and resistance exercise. Both ageing and lifestyle-related metabolic dysfunction are strongly linked to exercise redox and hypertrophic insensitivity. The adaptive inability and consequent exercise intolerance may discourage people from physical training resulting in a vicious cycle of under-exercising, energy surplus, chronic mitochondrial stress, accelerated functional decline and increased susceptibility to serious diseases. Skeletal muscles are malleable and dynamic organs, rewiring their metabolism depending on the metabolic or mechanical stress resulting in a specific phenotype. Endogenous RNA silencing molecules, microRNAs, are regulators of these metabolic/phenotypic shifts in skeletal muscles. Skeletal muscle microRNA profiles at baseline and in response to exercise have been observed to differ between adult and older people, as well as trained vs. sedentary individuals. Likewise, the circulating microRNA blueprint varies based on age and training status. Therefore, microRNAs emerge as key regulators of metabolic health/capacity and hormetic adaptability. In this narrative review, we summarise the literature exploring the links between microRNAs and skeletal muscle, as well as systemic adaptation to exercise. We expand a mathematical model of microRNA burst during adaptation to exercise through supporting data from the literature. We describe a potential link between the microRNA-dependent regulation of redox-signalling sensitivity and the ability to mount a hypertrophic response to exercise or nutritional cues. We propose a hypothetical model of endurance exercise-induced microRNA "memory cloud" responsible for establishing a landscape conducive to aerobic as well as anabolic adaptation. We suggest that regular aerobic exercise, complimented by a healthy diet, in addition to promoting mitochondrial health and hypertrophic/insulin sensitivity, may also suppress the glycolytic phenotype and mTOR signalling through miRNAs which in turn promote systemic metabolic health.

Keywords

References

  1. Autophagy. 2016;12(2):369-80 [PMID: 26566717]
  2. Mol Cell Biol. 2007 Feb;27(4):1531-43 [PMID: 17145772]
  3. J Appl Physiol (1985). 2011 Feb;110(2):309-17 [PMID: 21030674]
  4. Dev Cell. 2009 Nov;17(5):662-73 [PMID: 19922871]
  5. J Gerontol A Biol Sci Med Sci. 2017 Nov 9;72(12):1595-1606 [PMID: 28505227]
  6. Cells. 2019 Mar 12;8(3): [PMID: 30871120]
  7. Am J Physiol Cell Physiol. 2022 Mar 1;322(3):C461-C467 [PMID: 35108118]
  8. Dev Cell. 2014 Feb 10;28(3):225-38 [PMID: 24525185]
  9. Cold Spring Harb Perspect Med. 2018 Jun 1;8(6): [PMID: 28490537]
  10. Obesity (Silver Spring). 2017 Oct;25(10):1734-1744 [PMID: 28834285]
  11. Am J Physiol Endocrinol Metab. 2018 Oct 1;315(4):E723-E733 [PMID: 29969318]
  12. J Gerontol A Biol Sci Med Sci. 2017 Oct 1;72(10):1319-1326 [PMID: 27927764]
  13. Oncotarget. 2017 Feb 7;8(6):10662-10674 [PMID: 27793012]
  14. J Clin Med. 2020 Sep 26;9(10): [PMID: 32993104]
  15. Free Radic Biol Med. 2015 Dec;89:852-62 [PMID: 26482865]
  16. Cell Death Dis. 2021 Feb 24;12(2):209 [PMID: 33627622]
  17. Front Nutr. 2019 Jun 12;6:91 [PMID: 31249834]
  18. FEBS Lett. 2014 Feb 14;588(4):517-30 [PMID: 24440355]
  19. FASEB J. 2014 Sep;28(9):4133-47 [PMID: 24928197]
  20. Free Radic Biol Med. 2016 Sep;98:46-55 [PMID: 27021964]
  21. Oncotarget. 2017 Nov 9;8(63):107167-107175 [PMID: 29291020]
  22. Cells. 2019 Jun 15;8(6): [PMID: 31208084]
  23. J Physiol. 2022 Sep;600(17):3951-3963 [PMID: 35822542]
  24. Mol Vis. 2014 Nov 05;20:1569-78 [PMID: 25489229]
  25. J Appl Physiol (1985). 1990 May;68(5):2195-9 [PMID: 2361923]
  26. Int J Mol Sci. 2021 Oct 26;22(21): [PMID: 34768999]
  27. Nat Rev Drug Discov. 2021 Sep;20(9):689-709 [PMID: 34194012]
  28. Science. 2009 Dec 11;326(5959):1549-54 [PMID: 20007902]
  29. Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):E10849-E10858 [PMID: 30373812]
  30. Exp Gerontol. 2011 Aug;46(8):670-8 [PMID: 21504786]
  31. Redox Biol. 2020 Aug;35:101499 [PMID: 32192916]
  32. Biomolecules. 2015 Apr 10;5(2):356-77 [PMID: 25866921]
  33. Life Sci. 2017 Feb 1;170:33-40 [PMID: 27888112]
  34. Physiol Genomics. 2009 Nov 6;39(3):219-26 [PMID: 19690046]
  35. Int J Mol Sci. 2021 Jun 02;22(11): [PMID: 34199590]
  36. PLoS Genet. 2021 Dec 16;17(12):e1009934 [PMID: 34914716]
  37. Cell Metab. 2018 Jan 9;27(1):237-251.e4 [PMID: 29320704]
  38. Biochem J. 2003 Mar 15;370(Pt 3):737-49 [PMID: 12429021]
  39. Development. 2019 Apr 11;146(12): [PMID: 30890574]
  40. Am J Physiol Regul Integr Comp Physiol. 2013 Oct 15;305(8):R927-38 [PMID: 23904108]
  41. Free Radic Biol Med. 2010 Nov 30;49(10):1487-93 [PMID: 20708680]
  42. J Cell Biochem. 2019 Aug;120(8):12740-12751 [PMID: 30945349]
  43. Free Radic Biol Med. 2021 Aug 20;172:82-89 [PMID: 34089788]
  44. J Biol Chem. 2007 Nov 16;282(46):33752-33759 [PMID: 17873280]
  45. Exp Gerontol. 2008 Jun;43(6):563-70 [PMID: 18395385]
  46. Cell Mol Life Sci. 2019 Jul;76(13):2559-2570 [PMID: 30976839]
  47. FASEB J. 2019 Jul;33(7):8094-8109 [PMID: 30939245]
  48. Mol Cell Biochem. 2021 Jan;476(1):247-259 [PMID: 32918185]
  49. Obesity (Silver Spring). 2022 Jun;30(6):1219-1230 [PMID: 35578807]
  50. Int J Mol Sci. 2021 Jan 07;22(2): [PMID: 33430391]
  51. Antioxidants (Basel). 2020 Mar 12;9(3): [PMID: 32178436]
  52. Am J Physiol Heart Circ Physiol. 2014 Aug 1;307(3):H292-306 [PMID: 24906921]
  53. Nat Commun. 2014 Aug 22;5:4725 [PMID: 25145289]
  54. Annu Rev Biochem. 2017 Jun 20;86:715-748 [PMID: 28441057]
  55. Front Physiol. 2020 Aug 11;11:949 [PMID: 32848876]
  56. Front Physiol. 2022 Jan 21;12:742004 [PMID: 35126169]
  57. Cell Stress Chaperones. 2020 Jul;25(4):601-613 [PMID: 32253742]
  58. Front Cell Dev Biol. 2020 Jun 16;8:480 [PMID: 32612995]
  59. Mech Ageing Dev. 2006 Nov;127(11):830-9 [PMID: 16996110]
  60. RNA Biol. 2016 Dec;13(12):1300-1309 [PMID: 27661135]
  61. Biogerontology. 2016 Jun;17(3):641-54 [PMID: 26922183]
  62. Cell. 1999 Jul 9;98(1):115-24 [PMID: 10412986]
  63. Proc Natl Acad Sci U S A. 2009 May 26;106(21):8665-70 [PMID: 19433800]
  64. Med Sci Sports Exerc. 2000 Jan;32(1):70-84 [PMID: 10647532]
  65. Cells. 2020 Apr 22;9(4): [PMID: 32331346]
  66. PLoS Genet. 2006 Jul;2(7):e115 [PMID: 16789832]
  67. J Clin Invest. 2013 Jun;123(6):2564-75 [PMID: 23676496]
  68. J Cachexia Sarcopenia Muscle. 2020 Dec;11(6):1705-1722 [PMID: 32881361]
  69. Free Radic Biol Med. 2021 Aug 20;172:273-285 [PMID: 34119583]
  70. Sci Signal. 2017 Sep 05;10(495): [PMID: 28874604]
  71. IEEE/ACM Trans Comput Biol Bioinform. 2021 Jan-Feb;18(1):272-282 [PMID: 31484129]
  72. Dev Biol. 2008 Sep 15;321(2):491-9 [PMID: 18619954]
  73. Cell Metab. 2013 Feb 5;17(2):162-84 [PMID: 23395166]
  74. N Engl J Med. 2002 Mar 14;346(11):793-801 [PMID: 11893790]
  75. Dev Biol. 2016 Feb 1;410(1):1-13 [PMID: 26708096]
  76. Free Radic Biol Med. 2014 May;70:23-32 [PMID: 24525000]
  77. Sports Med. 2015 Oct;45(10):1469-81 [PMID: 26243014]
  78. Curr Top Microbiol Immunol. 2010;346:267-78 [PMID: 20593312]
  79. Physiol Rep. 2020 Aug;8(16):e14520 [PMID: 32812391]
  80. J Clin Med. 2020 Jul 10;9(7): [PMID: 32664402]
  81. Exp Gerontol. 2019 May;119:61-73 [PMID: 30690066]
  82. J Biol Chem. 2014 Aug 8;289(32):21909-25 [PMID: 24891504]
  83. Int J Biochem Cell Biol. 2013 Oct;45(10):2209-14 [PMID: 23872221]
  84. Cell Metab. 2019 Aug 6;30(2):261-273.e6 [PMID: 31279675]
  85. Mol Cell Biol. 2011 Jan;31(1):203-14 [PMID: 21041476]
  86. Front Physiol. 2019 Aug 09;10:929 [PMID: 31447684]
  87. Gerontology. 2011;57(6):528-38 [PMID: 21311168]
  88. Adv Exp Med Biol. 2017;1000:281-322 [PMID: 29098627]
  89. Aging Cell. 2019 Feb;18(1):e12880 [PMID: 30548390]
  90. Front Genet. 2019 May 14;10:435 [PMID: 31139208]
  91. Exerc Sport Sci Rev. 2017 Apr;45(2):58-69 [PMID: 28098577]
  92. Am J Physiol Cell Physiol. 2019 Feb 1;316(2):C285-C292 [PMID: 30540495]
  93. Circulation. 1992 Aug;86(2):494-503 [PMID: 1638717]
  94. Redox Biol. 2020 May;32:101472 [PMID: 32171726]
  95. J Cell Sci. 2018 Jul 27;131(14): [PMID: 30054310]
  96. Aging Cell. 2021 Oct;20(10):e13475 [PMID: 34560818]
  97. J Physiol. 2018 Aug;596(16):3567-3584 [PMID: 29781176]
  98. Mol Cell Proteomics. 2014 Jan;13(1):18-29 [PMID: 24068033]
  99. Methods Protoc. 2020 Dec 24;4(1): [PMID: 33374478]
  100. Int J Cell Biol. 2013;2013:616294 [PMID: 23864860]
  101. J Physiol. 2009 Jan 15;587(1):211-7 [PMID: 19001042]
  102. J Physiol. 2022 Sep;600(17):3899-3900 [PMID: 35932283]
  103. PLoS One. 2019 Feb 11;14(2):e0212115 [PMID: 30742692]
  104. J Appl Physiol (1985). 2005 Dec;99(6):2149-58 [PMID: 16051712]
  105. Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15330-5 [PMID: 22949648]
  106. Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30335-30343 [PMID: 33199621]
  107. Front Physiol. 2020 Jun 10;11:605 [PMID: 32587527]
  108. Aging Cell. 2011 Dec;10(6):1047-55 [PMID: 21933339]
  109. Am J Physiol Cell Physiol. 2022 Jan 1;322(1):C86-C93 [PMID: 34817266]
  110. Aging (Albany NY). 2019 Sep 14;11(18):7587-7604 [PMID: 31525732]
  111. Crit Rev Food Sci Nutr. 2012;52(5):373-81 [PMID: 22369257]
  112. Eur J Sport Sci. 2019 Aug;19(7):952-963 [PMID: 30741116]
  113. J Cachexia Sarcopenia Muscle. 2012 Sep;3(3):157-62 [PMID: 22589021]
  114. J Physiol. 2013 Aug 1;591(15):3789-804 [PMID: 23732643]
  115. Mech Ageing Dev. 2011 Mar;132(3):75-85 [PMID: 21216258]
  116. J Physiol. 2014 Apr 15;592(8):1887-901 [PMID: 24492839]
  117. Aging Cell. 2020 Apr;19(4):e13140 [PMID: 32291905]
  118. Cell Mol Life Sci. 2020 May;77(10):1947-1958 [PMID: 31748917]
  119. J Cell Biol. 2006 Aug 28;174(5):677-87 [PMID: 16923828]
  120. Int J Sports Med. 2012 Sep;33(9):702-10 [PMID: 22706947]
  121. Am J Physiol Endocrinol Metab. 2008 Dec;295(6):E1333-40 [PMID: 18827171]
  122. Sports Med. 1989 Nov;8(5):302-20 [PMID: 2692122]
  123. Front Physiol. 2022 Mar 28;13:725919 [PMID: 35418873]
  124. J Cell Biol. 2010 Sep 6;190(5):867-79 [PMID: 20819939]
  125. FASEB J. 2021 Oct;35(10):e21893 [PMID: 34480776]
  126. Aging (Albany NY). 2016 Nov 14;8(11):2871-2896 [PMID: 27852976]
  127. Free Radic Biol Med. 2022 Jan;178:59-75 [PMID: 34823019]
  128. Mol Cells. 2015 Apr;38(4):343-8 [PMID: 25728750]
  129. Science. 2007 Apr 27;316(5824):575-9 [PMID: 17379774]
  130. J Cell Physiol. 2020 Jan;235(1):87-104 [PMID: 31230374]
  131. PLoS One. 2013 Sep 12;8(9):e74098 [PMID: 24069271]
  132. J Appl Physiol (1985). 2016 Sep 1;121(3):636-45 [PMID: 27445298]
  133. Physiol Res. 2011;60(2):281-9 [PMID: 21114360]
  134. EMBO Mol Med. 2016 Oct 4;8(10):1212-1228 [PMID: 27506764]
  135. Front Physiol. 2019 Apr 05;10:379 [PMID: 31024340]
  136. Physiol Genomics. 2016 Apr;48(4):320-4 [PMID: 26850043]
  137. J Physiol. 2008 Jan 1;586(1):35-44 [PMID: 17901124]
  138. J Physiol. 2010 Oct 15;588(Pt 20):4029-37 [PMID: 20724368]
  139. J Cell Physiol. 2020 Dec;235(12):9851-9863 [PMID: 32452584]
  140. Sci Rep. 2017 May 19;7(1):2203 [PMID: 28526870]
  141. Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):11936-41 [PMID: 21730146]
  142. Muscle Nerve. 2002 Jun;25(6):902-5 [PMID: 12115981]
  143. Aging (Albany NY). 2019 Mar 25;11(6):1791-1803 [PMID: 30910993]
  144. Science. 2001 Nov 23;294(5547):1704-8 [PMID: 11679633]
  145. Dev Biol. 2007 Nov 15;311(2):359-68 [PMID: 17936265]
  146. J Physiol. 2013 Sep 15;591(18):4637-53 [PMID: 23798494]
  147. Nature. 2020 Aug;584(7820):279-285 [PMID: 32760005]
  148. Am J Physiol Endocrinol Metab. 2010 Nov;299(5):E794-801 [PMID: 20739506]
  149. Antioxid Redox Signal. 2017 Dec 20;27(18):1447-1459 [PMID: 28494652]
  150. Biogerontology. 2012 Dec;13(6):621-31 [PMID: 23187721]
  151. Int J Mol Sci. 2019 Nov 13;20(22): [PMID: 31766249]
  152. Cell Rep. 2019 Jan 29;26(5):1344-1356.e5 [PMID: 30699359]
  153. Am J Physiol Heart Circ Physiol. 2018 Aug 1;315(2):H273-H283 [PMID: 29600898]
  154. Front Physiol. 2021 Feb 01;11:604274 [PMID: 33597890]
  155. Redox Biol. 2021 May;41:101867 [PMID: 33657525]
  156. Am J Physiol Regul Integr Comp Physiol. 2016 Jun 1;310(11):R1297-311 [PMID: 27101297]
  157. J Clin Invest. 2006 Jul;116(7):1853-64 [PMID: 16767219]
  158. FASEB J. 2021 Jun;35(6):e21644 [PMID: 34033143]
  159. Front Physiol. 2018 Sep 27;9:1387 [PMID: 30319457]
  160. Eur J Appl Physiol. 2021 Apr;121(4):969-992 [PMID: 33420603]
  161. J Physiol. 2021 Feb;599(3):845-861 [PMID: 31944292]
  162. PLoS One. 2017 Jun 22;12(6):e0179270 [PMID: 28640861]
  163. Sci Rep. 2022 May 9;12(1):7553 [PMID: 35534615]
  164. J Biol Chem. 2009 Feb 20;284(8):5362-9 [PMID: 19073597]
  165. Nat Genet. 2006 Feb;38(2):228-33 [PMID: 16380711]
  166. Biogerontology. 2015 Apr;16(2):249-64 [PMID: 25537184]
  167. J Cell Sci. 2020 Aug 11;133(15): [PMID: 32620696]
  168. Free Radic Biol Med. 2016 Jul;96:130-8 [PMID: 27109910]
  169. Mol Med Rep. 2016 Mar;13(3):2194-200 [PMID: 26782975]
  170. Cell Stem Cell. 2015 Feb 5;16(2):171-83 [PMID: 25600643]
  171. Redox Biol. 2020 Jul;34:101492 [PMID: 32361680]
  172. Am J Physiol Cell Physiol. 2021 Dec 1;321(6):C977-C991 [PMID: 34705586]
  173. Med Sci Sports Exerc. 1997 May;29(5):591-603 [PMID: 9140894]
  174. J Gerontol A Biol Sci Med Sci. 2015 Nov;70(11):1386-93 [PMID: 25504576]
  175. Philos Trans R Soc Lond B Biol Sci. 2018 Jan 19;373(1738): [PMID: 29203714]
  176. Skelet Muscle. 2018 Feb 24;8(1):6 [PMID: 29477142]
  177. J Mol Biol. 2022 Jan 15;434(1):167157 [PMID: 34271010]
  178. Acta Physiol (Oxf). 2013 Aug;208(4):376-86 [PMID: 23582030]
  179. J Appl Physiol (1985). 2009 Jun;106(6):2040-8 [PMID: 19131471]
  180. Front Cell Dev Biol. 2021 Apr 26;9:667311 [PMID: 33981707]
  181. Mol Nutr Food Res. 2013 Jul;57(7):1246-54 [PMID: 23505034]
  182. Drugs. 2015 Jul;75(10):1071-94 [PMID: 26059289]
  183. Physiol Rep. 2015 Nov;3(11): [PMID: 26603456]
  184. Biochem Soc Trans. 2003 Apr;31(2):455-6 [PMID: 12653661]
  185. Front Physiol. 2021 Aug 02;12:658218 [PMID: 34408656]
  186. J Appl Physiol (1985). 2006 Aug;101(2):531-44 [PMID: 16614355]
  187. Biochim Biophys Acta Bioenerg. 2018 Sep;1859(9):940-950 [PMID: 29859845]
  188. Cell Rep. 2019 Oct 15;29(3):749-763.e12 [PMID: 31618641]
  189. Front Physiol. 2016 Jan 12;6:422 [PMID: 26793123]
  190. J Physiol. 2016 Dec 15;594(24):7399-7417 [PMID: 27654940]
  191. Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4218-23 [PMID: 20142475]

Grants

  1. MR/P020941/1/Medical Research Council

MeSH Term

Humans
MicroRNAs
Muscle, Skeletal
Exercise
Circulating MicroRNA
Signal Transduction
Hypertrophy

Chemicals

MicroRNAs
Circulating MicroRNA

Word Cloud

Created with Highcharts 10.0.0exercisemusclemetabolicmicroRNAsmicroRNAstressskeletalageingsystemicwelladaptationdeclinedietkeyadaptiveenduranceredoxhypertrophicmaypeopletrainingresultingmitochondrialSkeletalmusclesphenotyperegulatorsresponseliteraturemodelsensitivityaerobichealthOxidativeinflammationassociatedfunctiondiseaseinadequateand/orpoorParadoxicallyreactiveoxygenspeciesinflammatorycytokinesmountingmuscularresponsesresistancelifestyle-relateddysfunctionstronglylinkedinsensitivityinabilityconsequentintolerancediscouragephysicalviciouscycleunder-exercisingenergysurpluschronicacceleratedfunctionalincreasedsusceptibilityseriousdiseasesmalleabledynamicorgansrewiringmetabolismdependingmechanicalspecificEndogenousRNAsilencingmoleculesmetabolic/phenotypicshiftsprofilesbaselineobserveddifferadultoldertrainedvssedentaryindividualsLikewisecirculatingblueprintvariesbasedagestatusThereforeemergehealth/capacityhormeticadaptabilitynarrativereviewsummariseexploringlinksexpandmathematicalburstsupportingdatadescribepotentiallinkmicroRNA-dependentregulationredox-signallingabilitymountnutritionalcuesproposehypotheticalexercise-induced"memorycloud"responsibleestablishinglandscapeconduciveanabolicsuggestregularcomplimentedhealthyadditionpromotinghypertrophic/insulinalsosuppressglycolyticmTORsignallingmiRNAsturnpromoteMicroRNAsSentinelsRedoxHypertrophicSignallingsarcopenia

Similar Articles

Cited By