The Efficacious Benefit of 25-Hydroxy Vitamin D to Prevent COVID-19: An In-Silico Study Targeting SARS-CoV-2 Spike Protein.

Tomy Muringayil Joseph, Akshay Maniyeri Suresh, Debarshi Kar Mahapatra, Józef Haponiuk, Sabu Thomas
Author Information
  1. Tomy Muringayil Joseph: Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland. ORCID
  2. Akshay Maniyeri Suresh: Laboratory of Bacterial Genetics, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland. ORCID
  3. Debarshi Kar Mahapatra: Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, Maharashtra, India. ORCID
  4. Józef Haponiuk: Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland. ORCID
  5. Sabu Thomas: International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686560, Kerala, India.

Abstract

The environment has rapidly looked at proven specialist task forces in the aftermath of the COVID-19 pandemic to build public health policies and measures to mitigate the effects of emerging coronaviruses. According to the researchers, taking 10 μg of 25-hydroxy vitamin D daily is recommended to keep us safe. There have been several studies recently indicating that there is a reduced risk of contracting Coronavirus by 25-hydroxy vitamin D consumption, even though there is no scientific data to prove that one would not affect the COVID-19 viral infection by 25-hydroxy vitamin D consumption. In this regard, the present study investigates the important literature and the role of 25-hydroxy vitamin D to prevent COVID-19 infection by conducting an in-silico study with SARS-CoV-2 spike protein as a target. Lopinavir, a previously reported drug candidate, served as a reference standard for the study. MD simulations were carried out to improve predictions of receptor-ligand complexes which offer novelty and strength to the current study. MD simulation protocols were explored and subjected to 25-hydroxy vitamin D and a known drug, Lopinavir. Comparison of ligands at refined models to the crystal structure led to promising results. Appropriate timescale simulations have been used to understand the activation mechanism, the role of water networks for receptor function, and the ligand binding process. Furthermore, MD simulations in combination with free energy calculations have also been carried out for lead optimization, evaluation of ligand binding modes, and assessment of ligand selectivity. From the results, 25-hydroxy vitamin D was discovered to have the vital interaction and highest potency in LBE, lower RMSD, and lower inhibition intensity similar to the standard. The findings from the current study suggested that 25-hydroxy vitamin D would be more effective in treating COVID-19. Compared with Lopinavir, 25-hydroxy vitamin D had the most potent interaction with the putative binding sites of the SARS-CoV-2 spike protein of COVID-19.

Keywords

References

  1. Sci Rep. 2017 Jun 12;7(1):3312 [PMID: 28607392]
  2. Food Funct. 2014 Sep;5(9):2365-70 [PMID: 25088394]
  3. Lancet. 2003 Oct 25;362(9393):1353-8 [PMID: 14585636]
  4. Chem Biol Drug Des. 2022 Nov;100(5):699-721 [PMID: 36002440]
  5. Eur Rev Med Pharmacol Sci. 2016 Jul;20(13):2916-9 [PMID: 27424994]
  6. J Basic Microbiol. 2021 Aug;61(8):709-720 [PMID: 34228389]
  7. Rev Med Virol. 2020 Sep;30(5):e2119 [PMID: 32584474]
  8. Clin Med (Lond). 2020 Jul;20(4):e107-e108 [PMID: 32503801]
  9. Biomolecules. 2019 Oct 24;9(11): [PMID: 31653092]
  10. Nutrients. 2020 May 09;12(5): [PMID: 32397511]
  11. Influenza Other Respir Viruses. 2019 Mar;13(2):176-183 [PMID: 30328294]
  12. Adv Nutr. 2016 Jan 15;7(1):66-75 [PMID: 26773015]
  13. Front Immunol. 2015 Oct 12;6:513 [PMID: 26528285]
  14. J Expo Anal Environ Epidemiol. 2001 May-Jun;11(3):231-52 [PMID: 11477521]
  15. Clin Pediatr (Phila). 1977 Jan;16(1):36-8 [PMID: 137094]
  16. Inflamm Bowel Dis. 2019 May 4;25(6):1088-1095 [PMID: 30601999]
  17. N Engl J Med. 2020 Feb 20;382(8):727-733 [PMID: 31978945]
  18. J Comput Aided Mol Des. 2013 Mar;27(3):221-34 [PMID: 23579614]
  19. Clin Nutr. 2008 Feb;27(1):5-15 [PMID: 18061312]
  20. Eur Rev Med Pharmacol Sci. 2020 Sep;24(18):9721-9738 [PMID: 33015818]
  21. Endocr Rev. 1982 Fall;3(4):331-66 [PMID: 6295752]
  22. JAMA Intern Med. 2020 Feb 1;180(2):190-197 [PMID: 31710339]
  23. J Med Chem. 2006 Oct 19;49(21):6177-96 [PMID: 17034125]
  24. Aliment Pharmacol Ther. 2020 Jun;51(12):1434-1437 [PMID: 32311755]
  25. Pak J Pharm Sci. 2020 Sep;33(5):2179-2186 [PMID: 33824127]
  26. Front Immunol. 2019 Sep 25;10:2291 [PMID: 31611877]
  27. J Gastrointest Surg. 2004 Jan;8(1):48-55; discussion 54-5 [PMID: 14746835]
  28. Clin Rheumatol. 2020 Jul;39(7):2055-2062 [PMID: 32277367]
  29. Nutrition. 2020 Jun;74:110835 [PMID: 32280058]
  30. Chem Biol Drug Des. 2013 Jan;81(1):136-47 [PMID: 23253135]
  31. MedComm (2020). 2022 Feb 17;3(1):e115 [PMID: 35281790]
  32. Am J Epidemiol. 2004 Sep 1;160(5):492-502 [PMID: 15321847]
  33. Am J Physiol Endocrinol Metab. 2021 Aug 1;321(2):E246-E251 [PMID: 34181461]
  34. Biochem Biophys Res Commun. 2016 Apr 22;473(1):283-289 [PMID: 27012197]
  35. Sci Total Environ. 2022 Jun 15;825:153902 [PMID: 35182622]
  36. Rev Cardiovasc Med. 2020 Sep 30;21(3):339-344 [PMID: 33070539]
  37. Molecules. 2022 Aug 31;27(17): [PMID: 36080385]
  38. Aliment Pharmacol Ther. 2020 May;51(10):993-995 [PMID: 32281109]
  39. Rheum Dis Clin North Am. 2012 Feb;38(1):125-39 [PMID: 22525848]
  40. BMJ. 2011 Apr 19;342:d2040 [PMID: 21505219]
  41. Int J Mol Sci. 2018 Aug 16;19(8): [PMID: 30115864]
  42. Chemosphere. 2022 Oct;305:135441 [PMID: 35764113]
  43. Am J Clin Nutr. 2000 Sep;72(3):690-3 [PMID: 10966885]
  44. Eur J Clin Nutr. 2020 Mar;74(3):366-376 [PMID: 31996793]
  45. Kidney Int. 2010 Jul;78(2):140-5 [PMID: 20182414]
  46. J Med Chem. 2014 Jul 24;57(14):5845-59 [PMID: 24471928]
  47. Aliment Pharmacol Ther. 2020 May;51(10):995-996 [PMID: 32286694]
  48. Med Drug Discov. 2020 Jun;6:100041 [PMID: 32352080]
  49. Nature. 2020 Aug;584(7821):430-436 [PMID: 32640463]
  50. Epidemiol Infect. 2020 Feb 14;148:e29 [PMID: 32054544]
  51. J Immunol. 2004 Sep 1;173(5):2909-12 [PMID: 15322146]
  52. Epidemiol Infect. 2006 Dec;134(6):1129-40 [PMID: 16959053]
  53. Endocrine. 2020 Nov;70(2):206-210 [PMID: 33030665]
  54. Osteoporos Int. 2011 Jun;22(6):1745-53 [PMID: 20848081]
  55. Pediatr Pulmonol. 2020 Apr;55(4):1061-1073 [PMID: 32084305]
  56. Chemosphere. 2022 Nov;306:135578 [PMID: 35798154]
  57. J Clin Invest. 1985 Oct;76(4):1536-8 [PMID: 2997282]
  58. Am J Physiol Endocrinol Metab. 2020 May 1;318(5):E589 [PMID: 32297519]
  59. Clin Infect Dis. 2020 Jul 28;71(15):870-874 [PMID: 32215613]
  60. N Engl J Med. 2013 Aug 1;369(5):407-16 [PMID: 23782161]
  61. Am J Physiol Renal Physiol. 2005 Jul;289(1):F8-28 [PMID: 15951480]
  62. Aliment Pharmacol Ther. 2020 May;51(9):843-851 [PMID: 32222988]
  63. Hum Vaccin Immunother. 2020 Jun 2;16(6):1232-1238 [PMID: 32186952]
  64. Pediatr Infect Dis J. 2018 Aug;37(8):749-754 [PMID: 29315160]
  65. Cell Mol Immunol. 2016 Jan;13(1):3-10 [PMID: 26189369]
  66. Obesity (Silver Spring). 2020 Jul;28(7):1176-1177 [PMID: 32299148]
  67. Science. 2006 Mar 24;311(5768):1770-3 [PMID: 16497887]
  68. Nutrients. 2020 May 27;12(6): [PMID: 32471251]
  69. Nutrients. 2020 Apr 02;12(4): [PMID: 32252338]
  70. J Virol. 2014 Oct;88(20):11886-98 [PMID: 25100843]
  71. Int J Mol Sci. 2020 Apr 22;21(8): [PMID: 32331343]
  72. Biomed Res Int. 2015;2015:735615 [PMID: 26000302]
  73. World J Gastroenterol. 2019 Apr 14;25(14):1729-1740 [PMID: 31011257]
  74. J Clin Biochem Nutr. 2019 Nov;65(3):245-251 [PMID: 31777427]
  75. Nutrients. 2020 Aug 18;12(8): [PMID: 32824839]
  76. Open Heart. 2020 Sep;7(2): [PMID: 32938758]
  77. BMJ. 2017 Feb 15;356:i6583 [PMID: 28202713]
  78. J Steroid Biochem Mol Biol. 2007 Mar;103(3-5):793-8 [PMID: 17223549]
  79. Aging Clin Exp Res. 2020 Jul;32(7):1195-1198 [PMID: 32377965]
  80. Curr Allergy Asthma Rep. 2009 Jan;9(1):81-7 [PMID: 19063829]
  81. J Steroid Biochem Mol Biol. 2020 Oct;203:105751 [PMID: 32871238]
  82. Mol Endocrinol. 2013 Dec;27(12):2116-25 [PMID: 24196349]
  83. Am J Clin Nutr. 2010 May;91(5):1255-60 [PMID: 20219962]
  84. Clin Exp Immunol. 2017 Dec;190(3):351-359 [PMID: 28856667]

MeSH Term

Humans
Spike Glycoprotein, Coronavirus
COVID-19
Pandemics
SARS-CoV-2
Ligands
Molecular Docking Simulation
Vitamin D
Antiviral Agents

Chemicals

spike protein, SARS-CoV-2
Spike Glycoprotein, Coronavirus
Ligands
Vitamin D
Antiviral Agents

Word Cloud

Created with Highcharts 10.0.0D25-hydroxyvitaminCOVID-19studyLopinavirSARS-CoV-2MDsimulationsligandbindingCoronavirusconsumptioninfectionrolespikeproteindrugstandardcarriedcurrentsimulationresultsinteractionlowerenvironmentrapidlylookedprovenspecialisttaskforcesaftermathpandemicbuildpublichealthpoliciesmeasuresmitigateeffectsemergingcoronavirusesAccordingresearcherstaking10μgdailyrecommendedkeepussafeseveralstudiesrecentlyindicatingreducedriskcontractingeventhoughscientificdataproveoneaffectviralregardpresentinvestigatesimportantliteraturepreventconductingin-silicotargetpreviouslyreportedcandidateservedreferenceimprovepredictionsreceptor-ligandcomplexesoffernoveltystrengthprotocolsexploredsubjectedknownComparisonligandsrefinedmodelscrystalstructureledpromisingAppropriatetimescaleusedunderstandactivationmechanismwaternetworksreceptorfunctionprocessFurthermorecombinationfreeenergycalculationsalsoleadoptimizationevaluationmodesassessmentselectivitydiscoveredvitalhighestpotencyLBERMSDinhibitionintensitysimilarfindingssuggestedeffectivetreatingComparedpotentputativesitesEfficaciousBenefit25-HydroxyVitaminPreventCOVID-19:In-SilicoStudyTargetingSpikeProteindocking

Similar Articles

Cited By