Review on the Developments of Benzothiazole-containing Antimicrobial Agents.

Michelyne Haroun
Author Information
  1. Michelyne Haroun: Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.

Abstract

The infectious diseases caused by bacterial resistance to antibiotics constitute an increasing threat to human health on a global scale. An increasing number of infections, including tuberculosis, pneumonia, salmonellosis and gonorrhea, are becoming progressively challenging to cure owing to the ineffectiveness of current clinically used antibiotics and presents a serious health threat worldwide in medical community. The major concern of this global health threat is the ability of microorganisms to develop one or several mechanisms of resistance to antibiotics, making them inefficient to therapeutic treatment. The quest for discovering novel scaffold with antimicrobial property is particularly in great need to face future challenges in hospital and healthcare settings. Hence, the development of benzothiazoles is of considerable interest to medicinal chemists. Benzothiazole, being part of an important class of heterocyclic scaffold retains a wide spectrum of various attractive pharmacological activities. Antibiotic resistance represents an increasing burden comprising medical cost, hospital stay and mortality. Several derivatives containing a benzothiazole scaffold, reported in the literature, were found to display remarkable potencies towards diverse Grampositive and Gram-negative bacterial pathogens. The principal focus concerns the antibacterial potential of benzothiazole-based derivatives as antimicrobial agents interacting with targets in bacterial pathogens. In this review, we also disclose the significance of the benzothiazole moiety in the discovery of new antibacterial compounds, the potential of benzothiazole-based derivatives in the case of resistant bacterial strains, optimization of their antibacterial activity, and their future perspectives. The structure-activity relationship study and the mode of action of the title derivatives are highlighted too.

Keywords

References

  1. Saha M.; Sarkar A.; Review on multiple facets of drug resistance: a rising challenge in the 21st century. J Xenobiot 2021,11(4),197-214 [DOI: 10.3390/jox11040013]
  2. Ventola C.L.; The antibiotic resistance crisis: part 1: causes and threats. P [PMID: 25859123]
  3. Dadgostar P.; Antimicrobial resistance: implications and costs. Infect Drug Resist 2019,12,3903-3910 [DOI: 10.2147/IDR.S234610]
  4. Chaudhuri S.; Ghosh A.; Chattopadhyay S.K.; Green synthetic approaches for medium ring-sized heterocycles of biological and pharmaceutical interest. Green Synthetic Approaches for Biologically Relevant Heterocycles 2021,617-653 [DOI: 10.1016/B978-0-12-820792-5.00004-4]
  5. Sharma P.C.; Sinhmar A.; Sharma A.; Rajak H.; Pathak D.P.; Medicinal significance of benzothiazole scaffold: an insight view. J Enzyme Inhib Med Chem 2013,28(2),240-266 [DOI: 10.3109/14756366.2012.720572]
  6. Kok S.H.L.; Gambari R.; Chui C.H.; Yuen M.C.W.; Lin E.; Wong R.S.M.; Lau F.Y.; Cheng G.Y.M.; Lam W.S.; Chan S.H.; Lam K.H.; Cheng C.H.; Lai P.B.; Yu M.W.; Cheung F.; Tang J.C.; Chan A.S.; Synthesis and anti-cancer activity of benzothiazole containing phthalimide on human carcinoma cell lines. Bioorg Med Chem 2008,16(7),3626-3631 [DOI: 10.1016/j.bmc.2008.02.005]
  7. Huang S.T.; Hsei I.J.; Chen C.; Synthesis and anticancer evaluation of bis(benzimidazoles), bis(benzoxazoles), and benzothiazoles. Bioorg Med Chem 2006,14(17),6106-6119 [DOI: 10.1016/j.bmc.2006.05.007]
  8. Ismail M.A.H.; Tratrat C.; Haroun M.G.; Molecular modelling design, synthesis and cytotoxic evaluation of certain substituted 2-(3,4,5-triacetoxybenzoylamino)benzo[d]thiazole and 2-(galloylami-no)benzo[d]thiazole derivatives having potential topoisomerase-I inhibitory activity. J Enzyme Inhib Med Chem 2013,28(6),1331-1345 [DOI: 10.3109/14756366.2012.716835]
  9. Irfan A.; Batool F.; Zahra Naqvi S.A.; Islam A.; Osman S.M.; Nocentini A.; Alissa S.A.; Supuran C.T.; Benzothiazole derivatives as anticancer agents. J Enzyme Inhib Med Chem 2020,35(1),265-279 [DOI: 10.1080/14756366.2019.1698036]
  10. Su X.; Vicker N.; Ganeshapillai D.; Smith A.; Purohit A.; Reed M.J.; Potter B.V.L.; Benzothiazole derivatives as novel inhibitors of human 11β-hydroxysteroid dehydrogenase type 1. Mol Cell Endocrinol 2006,248(1-2),214-217 [DOI: 10.1016/j.mce.2005.10.022]
  11. Moreno-Díaz H.; Villalobos-Molina R.; Ortiz-Andrade R.; Díaz-Coutiño D.; Medina-Franco J.L.; Webster S.P.; Binnie M.; Estrada-Soto S.; Ibarra-Barajas M.; León-Rivera I.; Navarrete-Vázquez G.; Antidiabetic activity of N-(6-substituted-1,3-benzothiazol-2-yl)benzenesulfonamides. Bioorg Med Chem Lett 2008,18(9),2871-2877 [DOI: 10.1016/j.bmcl.2008.03.086]
  12. Haroun M.; Novel hybrids of pyrazolidinedione and benzothiazole as TZD analogues. rationale design, synthesis and in vivo anti-diabetic evaluation. Med Chem 2019,15(6),624-633 [DOI: 10.2174/1573406415666190515093657]
  13. Haroun M.; In silico Design, Synthesis and evaluation of novel series of benzothiazole- based pyrazolidinediones as potent hypoglycemic Agents. Med Chem 2020,16(6),812-825 [DOI: 10.2174/1573406416666191227113716]
  14. Haroun M.; Petrou A.; Tratrat C.; Kositsi K.; Gavalas A.; Geronikaki A.; Venugopala K.N.; Sreeharsha N.; Discovery of benzothiazole-based thiazolidinones as potential anti-inflammatory agents: anti-inflammatory activity, soybean lipoxygenase inhibition effect and molecular docking studies. SAR QSAR Environ Res 2022,33(6),485-497 [DOI: 10.1080/1062936X.2022.2084772]
  15. Doğruer D.S.; Ünlü S.; Şahin M.F.; Yqilada E.; Anti-nociceptive and anti-inflammatory activity of some (2-benzoxazolone-3-yl and 2-benzothiazolone-3-yl) acetic acid derivatives. Farmaco 1998,53(1),80-84 [DOI: 10.1016/S0014-827X(97)00017-7]
  16. Venugopala K.N.; Khedr M.A.; Pillay M.; Nayak S.K.; Chandrashekharappa S.; Aldhubiab B.E.; Harsha S.; Attimard M.; Odhav B.; Benzothiazole analogs as potential anti-TB agents: computational input and molecular dynamics. J Biomol Struct Dyn 2019,37(7),1830-1842 [DOI: 10.1080/07391102.2018.1470035]
  17. Venugopala K.N.; Chandrashekharappa S.; Pillay M.; Bhandary S.; Kandeel M.; Mahomoodally F.M.; Morsy M.A.; Chopra D.; Aldhubiab B.E.; Attimarad M.; Alwassil O.I.; Harsha S.; Mlisana K.; Odhav B.; Synthesis and structural elucidation of novel benzothiazole derivatives as anti-tubercular agents: In-silico screening for possible target identification. Med Chem 2019,15(3),311-326 [DOI: 10.2174/1573406414666180703121815]
  18. Moodley R.; Mashaba C.; Rakodi G.; Ncube N.; Maphoru M.; Balogun M.; Jordan A.; Warner D.; Khan R.; Tukulula M.; New quinoline-urea-benzothiazole hybrids as promising antitubercular agents: synthesis, in vitro antitubercular activity, cytotoxicity studies, and in silico ADME profiling. Pharmaceuticals (Basel) 2022,15(5),576 [DOI: 10.3390/ph15050576]
  19. Ke S.; Wei Y.; Yang Z.; Wang K.; Liang Y.; Shi L.; Novel cycloalkylthiophene-imine derivatives bearing benzothiazole scaffold: Synthesis, characterization and antiviral activity evaluation. Bioorg Med Chem Lett 2013,23(18),5131-5134 [DOI: 10.1016/j.bmcl.2013.07.023]
  20. Vicini P.; Geronikaki A.; Incerti M.; Busonera B.; Poni G.; Cabras C.A.; La Colla P.; Synthesis and biological evaluation of benzo[d]isothiazole, benzothiazole and thiazole Schiff bases. Bioorg Med Chem 2003,11(22),4785-4789 [DOI: 10.1016/S0968-0896(03)00493-0]
  21. Nagarajan S.R.; De Crescenzo G.A.; Getman D.P.; Lu H.F.; Sikorski J.A.; Walker J.L.; McDonald J.J.; Houseman K.A.; Kocan G.P.; Kishore N.; Mehta P.P.; Funkes-Shippy C.L.; Blystone L.; Discovery of novel benzothiazolesulfonamides as potent inhibitors of HIV-1 protease. Bioorg Med Chem 2003,11(22),4769-4777 [DOI: 10.1016/j.bmc.2003.07.001]
  22. Haroun M.; Tratrat C.; Petrou A.; Geronikaki A.; Ivanov M.; Ciric A.; Sokovic M.; 2-Aryl-3-(6-trifluoromethoxy)benzo[d]thiazole-based thiazolidinone hybrids as potential anti-infective agents: Synthesis, biological evaluation and molecular docking studies. Bioorg Med Chem Lett 2021,32,127718 [DOI: 10.1016/j.bmcl.2020.127718]
  23. Haroun M.; Tratrat C.; Kositzi K.; Tsolaki E.; Petrou A.; Aldhubiab B.; Attimarad M.; Harsha S.; Geronikaki A.; Venugopala K.N.; Elsewedy H.S.; Sokovic M.; Glamoclija J.; Ciric A.; New benzothiazole-based thiazolidinones as potent antimicrobial agents. Design, synthesis and biological evaluation. Curr Top Med Chem 2018,18(1),75-87 [DOI: 10.2174/1568026618666180206101814]
  24. Tratrat C.; novel thiazole-based thiazolidinones as potent anti-infective agents: in silico pass and toxicity prediction, synthesis, biological evaluation and molecular modelling. Comb Chem High Throughput Screen 2020,23(2),126-140 [DOI: 10.2174/1386207323666200127115238]
  25. Herrera Cano N.; Ballari M.S.; López A.G.; Santiago A.N.; New synthesis and biological evaluation of benzothiazole derivates as antifungal agents. J Agric Food Chem 2015,63(14),3681-3686 [DOI: 10.1021/acs.jafc.5b00150]
  26. Liu Y.; Wang Y.; Dong G.; Zhang Y.; Wu S.; Miao Z.; Yao J.; Zhang W.; Sheng C.; Novel benzothiazole derivatives with a broad antifungal spectrum: design, synthesis and structure-activity relationships. MedChemComm 2013,4(12),1551-1561 [DOI: 10.1039/c3md00215b]
  27. Jimonet P.; Audiau F.; Barreau M.; Blanchard J.C.; Boireau A.; Bour Y.; Coléno M.A.; Doble A.; Doerflinger G.; Do Huu C.; Donat M.H.; Duchesne J.M.; Ganil P.; Guérémy C.; Honoré E.; Just B.; Kerphirique R.; Gontier S.; Hubert P.; Laduron P.M.; Le Blevec J.; Meunier M.; Miquet J.M.; Nemecek C.; Pasquet M.; Piot O.; Pratt J.; Rataud J.; Reibaud M.; Stutzmann J-M.; Mignani S.; Riluzole series. Synthesis and in vivo “antiglutamate” activity of 6-substituted-2-benzothiazolamines and 3-substituted-2-imino-benzothiazolines. J Med Chem 1999,42(15),2828-2843 [DOI: 10.1021/jm980202u]
  28. Benazzouz A.; Boraud T.; Dubédat P.; Boireau A.; Stutzmann J.M.; Gross C.; Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: a pilot study. Eur J Pharmacol 1995,284(3),299-307 [DOI: 10.1016/0014-2999(95)00362-O]
  29. Neres J.; Brewer M.L.; Ratier L.; Botti H.; Buschiazzo A.; Edwards P.N.; Mortenson P.N.; Charlton M.H.; Alzari P.M.; Frasch A.C.; Bryce R.A.; Douglas K.T.; Discovery of novel inhibitors of Trypanosoma cruzi trans-sialidase from in silico screening. Bioorg Med Chem Lett 2009,19(3),589-596 [DOI: 10.1016/j.bmcl.2008.12.065]
  30. Sreenivasa G.; Jayachandran E.; Shivakumar B.; Jayaraj K.; Vijay K.; Synthesis of bioactive molecule fluoro benzothiazole comprising potent heterocyclic moieties for anthelmintic activity. Arch Pharm Sci Res 2009,1,150-157
  31. Gao X.; Liu J.; Zuo X.; Feng X.; Gao Y.; Recent advances in synthesis of benzothiazole compounds related to green chemistry. Molecules 2020,25(7),1675 [DOI: 10.3390/molecules25071675]
  32. Maddila S.; Gorle S.; Seshadri N.; Lavanya P.; Jonnalagadda S.B.; Synthesis, antibacterial and antifungal activity of novel benzothiazole pyrimidine derivatives. Arab J Chem 2016,9(5),681-687 [DOI: 10.1016/j.arabjc.2013.04.003]
  33. Abood Z.H.; Qabel H.A.; Ali H.R.; Microwave synthesis of 2,3-disubstituted-5-methyl-1,3-imidazolidines-4-one bearing benzothiazole moiety and elementarily assessment of their antibacterial action. J Phys Conf Ser 2018,1032,012058 [DOI: 10.1088/1742-6596/1032/1/012058]
  34. Sharma P.C.; Padwal S.; Saini A.; Bansal K.; Synthesis, characterization and antimicrobial evaluation of benzimidazole clubbed benzothiazole derivatives. Chem Biol Lett 2017,4,63-68
  35. Catalano A.; Carocci A.; Defrenza I.; Muraglia M.; Carrieri A.; Van Bambeke F.; Rosato A.; Corbo F.; Franchini C.; 2-Aminobenzothiazole derivatives: Search for new antifungal agents. Eur J Med Chem 2013,64,357-364 [DOI: 10.1016/j.ejmech.2013.03.064]
  36. Goya-Jorge E.; Abdmouleh F.; Carpio L.E.; Giner R.M.; Sylla-Iyarreta Veitía M.; Discovery of 2-aryl and 2-pyridinylbenzo-thiazoles endowed with antimicrobial and aryl hydrocarbon receptor agonistic activities. Eur J Pharm Sci 2020,151,105386 [DOI: 10.1016/j.ejps.2020.105386]
  37. Bandyopadhyay P.; Sathe M.; Ponmariappan S.; Sharma A.; Sharma P.; Srivastava A.K.; Kaushik M.P.; Exploration of in vitro time point quantitative evaluation of newly synthesized benzimidazole and benzothiazole derivatives as potential antibacterial agents. Bioorg Med Chem Lett 2011,21(24),7306-7309 [DOI: 10.1016/j.bmcl.2011.10.034]
  38. Bait S.; Shinde S.; Adivarekar R.; Sekar N.; A study on multifunctional protein fibre with UV protection, moth repellency and antibacterial properties using ESIPT core containing benzimidazole and benzothiazole based functional acid azo dyes. J Indian Chem Soc 2021,98(12),100236 [DOI: 10.1016/j.jics.2021.100236]
  39. Wang Y.; Zhou R.; Sun N.; He M.; Wu Y.; Xue W.; Synthesis and antibacterial activity of novel 1,4‐pentadien‐3‐one derivatives bearing a benzothiazole moiety. J Heterocycl Chem 2022,59(3),533-542 [DOI: 10.1002/jhet.4399]
  40. Morsy M.A.; Ali E.M.; Kandeel M.; Venugopala K.N.; Nair A.B.; Greish K.; El-Daly M.; Screening and molecular docking of novel benzothiazole derivatives as potential antimicrobial agents. Antibiotics (Basel) 2020,9(5),221 [DOI: 10.3390/antibiotics9050221]
  41. Kousaxidis A.; Kovacikova L.; Nicolaou I.; Stefek M.; Geronikaki A.; Non-acidic bifunctional benzothiazole-based thiazolidinones with antimicrobial and aldose reductase inhibitory activity as a promising therapeutic strategy for sepsis. Med Chem Res 2021,30(10),1837-1848 [DOI: 10.1007/s00044-021-02778-7]
  42. Lipinski C.A.; Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 2004,1(4),337-341 [DOI: 10.1016/j.ddtec.2004.11.007]
  43. Chazin E.L.; Terra L.; Moor L.; Sanches P.; Pinto L.; Martins T.; de Souza M.; Gomes C.; Montenegro R.; Novais J.; 1, 3-benzoxathiol-2-one and 1, 3-benzothiazole compounds as potential anticancer and antimicrobial agents. Rev. Virtual Quím 2020,12,1586-1598 [DOI: 10.21577/1984-6835.20200125]
  44. Pawar S.J.; Kale A.; Zori P.; Dorugade R.; Synthesis, molecular docking and antimicrobial evaluation of some benzothiazoles. Res Square 2021,2021,1-26
  45. Maliyappa M.R.; Keshavayya J.; Nazrulla M.A.; Sudhanva M.S.; Rangappa S.; Six-substituted benzothiazole based dispersed azo dyes having antipyrine moiety: synthesis, characterization, DFT, antimicrobial, anticancer and molecular docking studies. J Iran Chem Soc 2022 [DOI: 10.1007/s13738-022-02569-w]
  46. Khalil M.; Khalal Q.; Synthesis and characterization of new compounds derived from 2-hydrazinobenzothiazole and evaluated their antibacterial activity. 2021,012007
  47. Saraswat P.; Jeyabalan G.; Hassan M.Z.; Ahsan M.J.; Design, synthesis and biological evaluation of benzothiazole-thiophene hybrids: A new class of potent antimicrobial agents. Antiinfect Agents 2018,16(1),57-63 [DOI: 10.2174/2211352515666171124155327]
  48. Malunavar S.S.; Prabhala P.; Sutar S.M.; Kapavarapu R.; Mittal M.K.; Kalkhambkar R.G.; Molecular modeling and in vitro antimicrobial evaluation of some 2-aryl-benzoxazoles/benzothiazole analogues containing alkyl, alkenyl and alkynyl linkages. Chem Data Collect 2022,39,100876 [DOI: 10.1016/j.cdc.2022.100876]
  49. Gilani S.J.; Nagarajan K.; Dixit S.P.; Taleuzzaman M.; Khan S.A.; Benzothiazole incorporated thiazolidin-4-ones and azetidin-2-ones derivatives: Synthesis and in vitro antimicrobial evaluation. Arab J Chem 2016,9,S1523-S1531 [DOI: 10.1016/j.arabjc.2012.04.004]
  50. Maddili S.K.; Li Z.Z.; Kannekanti V.K.; Bheemanaboina R.R.Y.; Tuniki B.; Tangadanchu V.K.R.; Zhou C.H.; Azoalkyl ether imidazo[2,1-b]benzothiazoles as potentially antimicrobial agents with novel structural skeleton. Bioorg Med Chem Lett 2018,28(14),2426-2431 [DOI: 10.1016/j.bmcl.2018.06.016]
  51. Mohamed K.S.; Elbialy E.E.; Fadda A.A.; Synthesis of novel heterocycles comprising benzothiazole moiety and their antimicrobial evaluations. Polycycl Aromat Compd 2021,2021,2014535 [DOI: 10.1080/10406638.2021.2014535]
  52. Aa F.; Soliman N.N.; Fekri A.; Convenient route synthesis of some new benzothiazole derivatives and their pharmacological screening as antimicrobial agents. Ann Adv Chem 2017,1(1),032-046 [DOI: 10.29328/journal.aac.1001004]
  53. Bondock S.; Khalifa W.; Fadda A.A.; Synthesis and antimicrobial evaluation of some new thiazole, thiazolidinone and thiazoline derivatives starting from 1-chloro-3,4-dihydronaphthalene-2-carbox-aldehyde. Eur J Med Chem 2007,42(7),948-954 [DOI: 10.1016/j.ejmech.2006.12.025]
  54. Ouyang L.; Huang Y.; Zhao Y.; He G.; Xie Y.; Liu J.; He J.; Liu B.; Wei Y.; Preparation, antibacterial evaluation and preliminary structure-activity relationship (SAR) study of benzothiazol and benzoxazol-2-amine derivatives. Bioorg Med Chem Lett 2012,22(9),3044-3049 [DOI: 10.1016/j.bmcl.2012.03.079]
  55. Seenaiah D.; Reddy P.R.; Reddy G.M.; Padmaja A.; Padmavathi V.; Siva krishna N.; Synthesis, antimicrobial and cytotoxic activities of pyrimidinyl benzoxazole, benzothiazole and benzimidazole. Eur J Med Chem 2014,77,1-7 [DOI: 10.1016/j.ejmech.2014.02.050]
  56. Zhang J.; Wei C.; Li S.; Hu D.; Song B.; Discovery of novel bis-sulfoxide derivatives bearing acylhydrazone and benzothiazole moieties as potential antibacterial agents. Pestic Biochem Physiol 2020,167,104605 [DOI: 10.1016/j.pestbp.2020.104605]
  57. Stella A.; Segers K.; De Jonghe S.; Vanderhoydonck B.; Rozenski J.; Anné J.; Herdewijn P.; Synthesis and antibacterial evaluation of a novel series of 2-(1,2-dihydro-3-oxo-3H-pyrazol-2-yl)benzothiazoles. Chem Biodivers 2011,8(2),253-265 [DOI: 10.1002/cbdv.201000241]
  58. Catalano A.; Rosato A.; Salvagno L.; Iacopetta D.; Ceramella J.; Fracchiolla G.; Sinicropi M.S.; Franchini C.; Benzothiazole-containing analogues of triclocarban with potent antibacterial activity. Antibiotics (Basel) 2021,10(7),803 [DOI: 10.3390/antibiotics10070803]
  59. Nehra N.; Tittal R.K.; Ghule V.D.; 1,2,3-Triazoles of 8-Hydroxyquinoline and HBT: Synthesis and studies (DNA binding, antimicrobial, molecular docking, ADME, and DFT). ACS Omega 2021,6(41),27089-27100 [DOI: 10.1021/acsomega.1c03668]
  60. Zhang N.; Song D.; Chen W.; Zhang S.; Zhang P.; Zhang N.; Ma S.; Modification of 5-methylphenanthridium from benzothiazoles to indoles as potent FtsZ inhibitors: Broadening the antibacterial spectrum toward vancomycin-resistant enterococci. Eur J Med Chem 2021,224,113723 [DOI: 10.1016/j.ejmech.2021.113723]
  61. Chaithanya M.s.; Nagendrappa G.; Vaidya V.P.; Rudraswamy M.S.; Synthesis, antibacterial, antifungal and antiinflammatory activities of 4-aryl-2-(4-chlorophenyl)-4H-pyrimido-[2,1-b][1,3]-benzothiazoles. Pharm Lett 2013,5,94-99
  62. Sai Priya D.; Kini S.G.; Bhatt V.G.; Rathi E.; Muralidharan A.; Koteshwara A.; Novel schiff’s bases of substituted 2-amino benzothiazoles: Design, synthesis and antimicrobial activity. Indian Drugs 2018,55(4),18-26 [DOI: 10.53879/id.55.04.11219]
  63. Naaz F.; Srivastava R.; Singh A.; Singh N.; Verma R.; Singh V.K.; Singh R.K.; Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole. Bioorg Med Chem 2018,26(12),3414-3428 [DOI: 10.1016/j.bmc.2018.05.015]
  64. Kumar P.; Bhatia R.; Khanna R.; Dalal A.; Kumar D.; Surain P.; Kamboj R.C.; Synthesis of some benzothiazoles by developing a new protocol using urea nitrate as a catalyst and their antimicrobial activities. J Sulfur Chem 2017,38,1334781 [DOI: 10.1080/17415993.2017.1334781]
  65. Rezki N.; Aouad M.R.; Green ultrasound-assisted three-component click synthesis of novel 1 H -1,2,3-triazole carrying benzothiazoles and fluorinated-1,2,4-triazole conjugates and their antimicrobial evaluation. Acta Pharm 2017,67(3),309-324 [DOI: 10.1515/acph-2017-0024]
  66. Wiegand I.; Hilpert K.; Hancock R.E.W.; Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 2008,3(2),163-175 [DOI: 10.1038/nprot.2007.521]
  67. Varaldo P.E.; Antimicrobial resistance and susceptibility testing: an evergreen topic. J Antimicrob Chemother 2002,50(1),dkf093 [DOI: 10.1093/jac/dkf093]
  68. Zablotskaya A.; Segal I.; Geronikaki A.; Eremkina T.; Belyakov S.; Petrova M.; Shestakova I.; Zvejniece L.; Nikolajeva V.; Synthesis, physicochemical characterization, cytotoxicity, antimicrobial, anti-inflammatory and psychotropic activity of new N-[1,3-(benzo)thiazol-2-yl]-ω-[3,4-dihydroisoquinolin-2(1H)-yl]alkanamides. Eur J Med Chem 2013,70,846-856 [DOI: 10.1016/j.ejmech.2013.10.008]
  69. Padalkar V.S.; Borse B.N.; Gupta V.D.; Phatangare K.R.; Patil V.S.; Sekar N.; Synthesis and antimicrobial activities of novel 2-[substituted-1 H -pyrazol-4-yl] benzothiazoles, benzoxazoles, and benzimidazoles. J Heterocycl Chem 2016,53(5),1347-1355 [DOI: 10.1002/jhet.1506]
  70. Geesi M.H.; Ouerghi O.; Dehbi O.; Riadi Y.; Metal-doped TiO2 nanocatalysts in an MX2/urea mixture for the synthesis of benzothiazoles bearing substituted pyrrolidin-2-ones: Enhanced catalytic performance and antibacterial activity. J Environ Chem Eng 2021,9(4),105344 [DOI: 10.1016/j.jece.2021.105344]
  71. Palkar M.; Noolvi M.; Sankangoud R.; Maddi V.; Gadad A.; Nargund L.V.G.; Synthesis and antibacterial activity of a novel series of 2,3-diaryl-substituted-imidazo(2,1-b)-benzothiazole derivatives. Arch Pharm (Weinheim) 2010,343(6),353-359 [DOI: 10.1002/ardp.200900260]
  72. Wang X.; Chen J.; Wang W.; Jaunarajs A.; Wang X.; Tryptoline-based benzothiazoles re-sensitize MRSA to β-lactam antibiotics. Bioorg Med Chem 2019,27(21),115095 [DOI: 10.1016/j.bmc.2019.115095]
  73. Gurram S.R.; Azam M.A.; Design, Synthesis, antibacterial evaluation and molecular docking studies of some newer baenzothiazole containing aryl and alkaryl hydrazides. Chem Biodivers 2021,18(7),e2100117 [DOI: 10.1002/cbdv.202100117]
  74. Kumbhare R.M.; Dadmal T.L.; Pamanji R.; Kosurkar U.B.; Velatooru L.R.; Appalanaidu K.; Khageswara Rao Y.; Venkateswara Rao J.; Synthesis of novel fluoro 1,2,3-triazole tagged amino bis(benzothiazole) derivatives, their antimicrobial and anticancer activity. Med Chem Res 2014,23(10),4404-4413 [DOI: 10.1007/s00044-014-1006-0]
  75. Kumbhare M.R.; Nagragu C.; Synthesis and study of the antimicrobial activity of novel tricyclic 2 hpyrimido [2, 1-b] benzothiazoles. Lett Drug Des Discov 2011,8,633-639 [DOI: 10.2174/157018011796235211]
  76. Er M.; Özer A.; Direkel Ş.; Karakurt T.; Tahtaci H.; Novel substituted benzothiazole and Imidazo[2,1-b][1,3,4]Thiadiazole derivatives: Synthesis, characterization, molecular docking study, and investigation of their in vitro antileishmanial and antibacterial activities. J Mol Struct 2019,1194,284-296 [DOI: 10.1016/j.molstruc.2019.05.104]
  77. Trott O.; Olson A.J.; AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010,31(2),455-461 [PMID: 19499576]
  78. DS Discovery Studio Modeling Environment Release 45 BIOVIA2015
  79. Racané L.; Ptiček L.; Fajdetić G.; Tralić-Kulenović V.; Klobučar M.; Kraljević Pavelić S. ; Perić M.; Paljetak H.Č; Verbanac D.; Starčević K.; Green synthesis and biological evaluation of 6-substituted-2-(2-hydroxy/methoxy phenyl)benzothiazole derivatives as potential antioxidant, antibacterial and antitumor agents. Bioorg Chem 2020,95,103537 [DOI: 10.1016/j.bioorg.2019.103537]
  80. Zha L.; Xie Y.; Wu C.; Lei M.; Lu X.; Tang W.; Zhang J.; Novel benzothiazole-urea hybrids: Design, synthesis and biological activity as potent anti-bacterial agents against MRSA. Eur J Med Chem 2022,236,114333 [DOI: 10.1016/j.ejmech.2022.114333]
  81. Bax B.D.; Chan P.F.; Eggleston D.S.; Fosberry A.; Gentry D.R.; Gorrec F.; Giordano I.; Hann M.M.; Hennessy A.; Hibbs M.; Huang J.; Jones E.; Jones J.; Brown K.K.; Lewis C.J.; May E.W.; Saunders M.R.; Singh O.; Spitzfaden C.E.; Shen C.; Shillings A.; Theobald A.J.; Wohlkonig A.; Pearson N.D.; Gwynn M.N.; Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 2010,466(7309),935-940 [DOI: 10.1038/nature09197]
  82. Kyhoiesh H.A.K.; Al-Adilee K.J.; Synthesis, spectral characterization and biological activities of Ag(I), Pt(IV) and Au(III) complexes with novel azo dye ligand (N, N, O) derived from 2-amino-6-methoxy benzothiazole. Chem Zvesti 2022,76(5),2777-2810 [DOI: 10.1007/s11696-022-02072-9]
  83. Mishra A.; Batar A.; Kumar R.; Khandelwal A.; Lama P.; Chhabra M.; Metre R.K.; Assembly of Di-, tetra- and hexanuclear organostannoxanes using hemi labile intramolecular n→sn coordination: synthesis, structure, DFT and antibacterial studies. Polyhedron 2021,209,115487 [DOI: 10.1016/j.poly.2021.115487]
  84. Singh G.; Diksha; Mohit; Suman; Shilpy; Devi, A.; Gupta, S.; Yadav, R.; Sehgal, R. Benzothiazole tethered triazole based potential antibacterial agent as a selective fluorometric probe for the detection of Al3+ ions and phenylalanine. J Mol Struct 2022,1262,132967 [DOI: 10.1016/j.molstruc.2022.132967]
  85. Mishra N.; Kumar K.; Pandey H.; Raj Anand S.; Yadav R.; Prakash Srivastava S.; Pandey R.; Synthesis, characterization, optical and anti-bacterial properties of benzothiazole Schiff bases and their lanthanide (III) complexes. J Saudi Chem Soc 2020,24(12),925-933 [DOI: 10.1016/j.jscs.2020.09.009]
  86. Ibrahim S.; Gavisiddegowda P.; Deepakumari H.N.; Kollur S.P.; Naik N.; Newly synthesized benzothiazole derived ligand and its Co (III) and Ru (III) complexes as biological potent molecules: Chemical preparation, structure, antimicrobial, in vitro and in vivo cytotoxicity studies. Biointerface Res Appl Chem 2022,12(6),7817-7844
  87. Jawoor S.S.; Patil S.A.; Toragalmath S.S.; Synthesis and characterization of heteroleptic Schiff base transition metal complexes: a study of anticancer, antimicrobial, DNA cleavage and anti-TB activity. J Coord Chem 2018,71(2),271-283 [DOI: 10.1080/00958972.2017.1421951]
  88. Rambabu A.; Pradeep Kumar M.; Tejaswi S.; Vamsikrishna N.; Shivaraj, DNA interaction, antimicrobial studies of newly synthesized copper (II) complexes with 2-amino-6-(trifluoromethoxy)] benzothiazole Schiff base ligands. J Photochem Photobiol B 2016,165,147-156 [DOI: 10.1016/j.jphotobiol.2016.10.027]
  89. Meghdadi S.; Amirnasr M.; Mirhashemi A.; Amiri A.; Synthesis, characterization and X-ray crystal structure of copper(I) complexes of the 2-(2-quinolyl)benzothiazole ligand. Electrochemical and antibacterial studies. Polyhedron 2015,97,234-239 [DOI: 10.1016/j.poly.2015.05.026]
  90. Chakraborty I.; Pinto M.; Stenger-Smith J.; Martinez-Gonzalez J.; Mascharak P.K.; Synthesis, structures and antibacterial properties of Cu(II) and Ag(I) complexes derived from 2,6-bis(benzothiazole)-pyridine. Polyhedron 2019,172,1-7 [DOI: 10.1016/j.poly.2019.02.001]
  91. Jung W.K.; Koo H.C.; Kim K.W.; Shin S.; Kim S.H.; Park Y.H.; Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 2008,74(7),2171-2178 [DOI: 10.1128/AEM.02001-07]
  92. Rao N.N.; kishan E.; Gopichand K.; Nagaraju R.; Ganai A.M.; Rao P.V.; Design, synthesis, spectral characterization, DNA binding, photo cleavage and antibacterial studies of transition metal complexes of benzothiazole Schiff base. Chem Data Collect 2020,27,100368 [DOI: 10.1016/j.cdc.2020.100368]
  93. Stenger-Smith J.; Chakraborty I.; Sameera W.M.C.; Mascharak P.K.; Antimicrobial silver (I) complexes derived from aryl-benzothiazoles as turn-on sensors: Syntheses, properties and density functional studies. Inorg Chim Acta 2018,471,326-335 [DOI: 10.1016/j.ica.2017.11.022]
  94. Stenger-Smith J.; Chakraborty I.; Mascharak P.K.; Cationic Au(I) complexes with aryl-benzothiazoles and their antibacterial activity. J Inorg Biochem 2018,185,80-85 [DOI: 10.1016/j.jinorgbio.2018.05.003]
  95. Pal N.; Arya A.K.; An efficient and facile synthesis of Zn(II) complexes with 2-substituted benzothiazoles and glycine- and alanine-based ligands having antifungal and antibacterial activities. Res Chem Intermed 2013,39(2),553-560 [DOI: 10.1007/s11164-012-0578-x]
  96. Ahlawat A.; Khatkar P.; Singh V.; Asija S.; Diorganotin(IV) complexes of Schiff bases derived from salicylaldehyde and 2-amino-6-substituted benzothiazoles: synthesis, spectral studies, in vitro antimicrobial evaluation and QSAR studies. Res Chem Intermed 2018,44(7),4415-4435 [DOI: 10.1007/s11164-018-3395-z]
  97. Devi J.; Devi S.; Kumar A.; Synthesis, spectral, and in vitro antimicrobial studies of organosilicon(IV) complexes with Schiff bases derived from dehydroacetic acid. Monatsh Chem 2016,147(12),2195-2207 [DOI: 10.1007/s00706-016-1720-z]
  98. Dias L.C.; de Lima G.M.; Takahashi J.A.; Ardisson J.D.; New di- and triorganotin(IV) carboxylates derived from a Schiff base: synthesis, characterization and in vitro antimicrobial activities. Appl Organomet Chem 2015,29(5),305-313 [DOI: 10.1002/aoc.3292]
  99. Czympiel L.; Lekeu J.M.; Hegemann C.; Mathur S.; Oxidative halogenation of Sn(II)heteroaryl alkenolates: Formation of unusual trans -dihalo Sn(IV) complexes. Inorg Chim Acta 2017,455,197-203 [DOI: 10.1016/j.ica.2016.10.023]

Grants

  1. 631/Deanship of Scientific Research of King Faisal University, Saudi Arabia

MeSH Term

Humans
Anti-Infective Agents
Anti-Bacterial Agents
Benzothiazoles
Structure-Activity Relationship
Microbial Sensitivity Tests

Chemicals

benzothiazole
Anti-Infective Agents
Anti-Bacterial Agents
Benzothiazoles

Word Cloud

Created with Highcharts 10.0.0bacterialderivativesresistanceantibioticsincreasingthreathealthscaffoldantibacterialglobalmedicalantimicrobialfuturehospitalBenzothiazolebenzothiazoleGram-negativepathogenspotentialbenzothiazole-basedrelationshipinfectiousdiseasescausedconstitutehumanscalenumberinfectionsincludingtuberculosispneumoniasalmonellosisgonorrheabecomingprogressivelychallengingcureowingineffectivenesscurrentclinicallyusedpresentsseriousworldwidecommunitymajorconcernabilitymicroorganismsdeveloponeseveralmechanismsmakinginefficienttherapeutictreatmentquestdiscoveringnovelpropertyparticularlygreatneedfacechallengeshealthcaresettingsHencedevelopmentbenzothiazolesconsiderableinterestmedicinalchemistspartimportantclassheterocyclicretainswidespectrumvariousattractivepharmacologicalactivitiesAntibioticrepresentsburdencomprisingcoststaymortalitySeveralcontainingreportedliteraturefounddisplayremarkablepotenciestowardsdiverseGrampositiveprincipalfocusconcernsagentsinteractingtargetsreviewalsodisclosesignificancemoietydiscoverynewcompoundscaseresistantstrainsoptimizationactivityperspectivesstructure-activitystudymodeactiontitlehighlightedtooReviewDevelopmentsBenzothiazole-containingAntimicrobialAgentsAntibacterialBactericidaleffectbacteriaGram-positiveStructure-activity

Similar Articles

Cited By