Protein corona: Friend or foe? Co-opting serum proteins for nanoparticle delivery.

Woojun Kim, Nhu Ky Ly, Yanying He, Yongzhe Li, Zhongyue Yuan, Yoon Yeo
Author Information
  1. Woojun Kim: Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
  2. Nhu Ky Ly: Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Université Paris Cité, Faculté de Santé, 4 Avenue de l'Observatoire, 75006 Paris, France.
  3. Yanying He: Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
  4. Yongzhe Li: Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
  5. Zhongyue Yuan: Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
  6. Yoon Yeo: Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, USA. Electronic address: yyeo@purdue.edu.

Abstract

For systemically delivered nanoparticles to reach target tissues, they must first circulate long enough to reach the target and extravasate there. A challenge is that the particles end up engaging with serum proteins and undergo immune cell recognition and premature clearance. The serum protein binding, also known as protein corona formation, is difficult to prevent, even with artificial protection via "stealth" coating. Protein corona may be problematic as it can interfere with the interaction of targeting ligands with tissue-specific receptors and abrogate the so-called active targeting process, hence, the efficiency of drug delivery. However, recent studies show that serum protein binding to circulating nanoparticles may be actively exploited to enhance their downstream delivery. This review summarizes known issues of protein corona and traditional strategies to control the corona, such as avoiding or overriding its formation, as well as emerging efforts to enhance drug delivery to target organs via nanoparticles. It concludes with a discussion of prevailing challenges in exploiting protein corona for nanoparticle development.

Keywords

References

  1. PLoS One. 2015 Jun 17;10(6):e0129577 [PMID: 26083725]
  2. Angew Chem Int Ed Engl. 2014 May 12;53(20):5093-6 [PMID: 24700480]
  3. Chem Commun (Camb). 2013 Mar 28;49(25):2557-9 [PMID: 23423192]
  4. ACS Nano. 2017 Feb 28;11(2):1659-1672 [PMID: 28085241]
  5. Biomaterials. 2014 Jan;35(1):518-29 [PMID: 24125772]
  6. Nat Nanotechnol. 2013 Feb;8(2):137-43 [PMID: 23334168]
  7. Colloids Surf B Biointerfaces. 2015 Nov 1;135:316-323 [PMID: 26275837]
  8. Biotechnol Adv. 2017 Nov 15;35(7):889-904 [PMID: 28844973]
  9. Drug Deliv Transl Res. 2019 Jun;9(3):721-734 [PMID: 30895453]
  10. Mol Pharm. 2012 May 7;9(5):1262-70 [PMID: 22489704]
  11. Int J Pharm. 2020 Jul 30;585:119536 [PMID: 32531447]
  12. Sci STKE. 2006 Mar 21;2006(327):pe14 [PMID: 16552091]
  13. Nat Nanotechnol. 2013 Oct;8(10):772-81 [PMID: 24056901]
  14. Nat Commun. 2022 Jan 10;13(1):49 [PMID: 35013179]
  15. Nanotechnology. 2015 Jun 19;26(24):245101 [PMID: 26011124]
  16. ACS Nano. 2022 May 24;16(5):7331-7343 [PMID: 35500062]
  17. Biomaterials. 2017 Jan;115:1-8 [PMID: 27871002]
  18. ACS Nano. 2013 Dec 23;7(12):10960-70 [PMID: 24256422]
  19. ACS Nano. 2015 Dec 22;9(12):11872-85 [PMID: 26575243]
  20. Toxicol Lett. 2016 Jan 5;240(1):172-84 [PMID: 26518974]
  21. Nanomedicine. 2018 Apr;14(3):643-650 [PMID: 29317346]
  22. Angew Chem Int Ed Engl. 2013 Apr 8;52(15):4179-83 [PMID: 23471887]
  23. Drug Deliv. 2016 Oct;23(8):2668-2676 [PMID: 26056719]
  24. Int J Pharm. 2017 Nov 5;532(2):677-685 [PMID: 28279737]
  25. Proc Natl Acad Sci U S A. 2022 Feb 22;119(8): [PMID: 35173043]
  26. Front Bioeng Biotechnol. 2020 Apr 03;8:166 [PMID: 32309278]
  27. Biomacromolecules. 2017 Feb 13;18(2):431-439 [PMID: 28075126]
  28. Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14265-70 [PMID: 18809927]
  29. Colloids Surf B Biointerfaces. 2022 May;213:112387 [PMID: 35151044]
  30. Nanomedicine (Lond). 2017 Sep;12(17):2113-2135 [PMID: 28805542]
  31. Int J Biol Macromol. 2021 Feb 1;169:290-301 [PMID: 33340622]
  32. Langmuir. 2014 Aug 19;30(32):9625-36 [PMID: 24754399]
  33. Sci Rep. 2017 Sep 5;7(1):10542 [PMID: 28874846]
  34. Biomaterials. 2018 Sep;178:204-280 [PMID: 29945064]
  35. Science. 2000 Jun 16;288(5473):2051-4 [PMID: 10856220]
  36. Nanomedicine. 2018 Feb;14(2):429-438 [PMID: 29157979]
  37. Nanomaterials (Basel). 2020 Apr 20;10(4): [PMID: 32325941]
  38. Small. 2018 Aug;14(34):e1801219 [PMID: 30058105]
  39. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012 Mar-Apr;4(2):219-33 [PMID: 22231928]
  40. J Control Release. 2012 Jan 10;157(1):4-28 [PMID: 21959118]
  41. Sci Rep. 2016 May 19;6:26269 [PMID: 27197045]
  42. Nanomedicine (Lond). 2021 Mar;16(7):535-551 [PMID: 33683145]
  43. Nanoscale. 2021 Mar 21;13(11):5883-5891 [PMID: 33725081]
  44. J Drug Target. 2005 Apr;13(3):179-87 [PMID: 16036306]
  45. Nat Nanotechnol. 2016 Apr;11(4):372-7 [PMID: 26878141]
  46. Nanoscale. 2014 Oct 7;6(19):11439-50 [PMID: 25154771]
  47. J Control Release. 2017 Oct 10;263:90-101 [PMID: 28049022]
  48. J Pharm Sci. 2019 May;108(5):1872-1889 [PMID: 30615879]
  49. Proc Natl Acad Sci U S A. 2021 Mar 9;118(10): [PMID: 33649229]
  50. ACS Biomater Sci Eng. 2018 Dec 10;4(12):4255-4265 [PMID: 31497639]
  51. Bioeng Transl Med. 2017 May 22;2(2):180-190 [PMID: 28932819]
  52. Int J Nanomedicine. 2019 Mar 25;14:2055-2067 [PMID: 30988608]
  53. Chem Biol Interact. 2018 Nov 1;295:64-72 [PMID: 29601805]
  54. J Control Release. 2009 Jul 1;137(1):78-86 [PMID: 19285109]
  55. Int J Pharm. 2007 Feb 1;329(1-2):110-6 [PMID: 17000067]
  56. Int J Biochem Cell Biol. 1999 May;31(5):539-44 [PMID: 10399314]
  57. Biomacromolecules. 2007 Mar;8(3):793-9 [PMID: 17309294]
  58. Mol Pharm. 2011 Oct 3;8(5):1669-76 [PMID: 21838321]
  59. J Immunol. 2004 Mar 1;172(5):2731-8 [PMID: 14978070]
  60. Nanoscale. 2018 Jan 18;10(3):1256-1264 [PMID: 29292433]
  61. J Clin Pharmacol. 2020 May;60(5):573-585 [PMID: 31777097]
  62. ACS Appl Mater Interfaces. 2013 Nov 27;5(22):11718-24 [PMID: 24138109]
  63. Beilstein J Nanotechnol. 2014 Aug 27;5:1380-92 [PMID: 25247121]
  64. Nano Lett. 2019 Jul 10;19(7):4692-4701 [PMID: 31244235]
  65. ACS Appl Mater Interfaces. 2015 Sep 23;7(37):20568-75 [PMID: 26364560]
  66. Nat Rev Mater. 2021 Apr;6(4):351-370 [PMID: 34950512]
  67. J Control Release. 2008 Dec 18;132(3):171-83 [PMID: 18582981]
  68. Biomaterials. 2018 Oct;180:206-224 [PMID: 30048910]
  69. Adv Healthc Mater. 2021 Jan;10(2):e2000948 [PMID: 33169521]
  70. ACS Nano. 2018 Jun 26;12(6):5834-5847 [PMID: 29750504]
  71. Biomaterials. 2017 Apr;123:15-23 [PMID: 28152380]
  72. Clin Immunol. 2006 Nov;121(2):144-58 [PMID: 16904380]
  73. Adv Sci (Weinh). 2021 Mar 01;8(8):2004979 [PMID: 33898204]
  74. Adv Exp Med Biol. 2018;1048:175-198 [PMID: 29453539]
  75. ACS Nano. 2015 Mar 24;9(3):2876-85 [PMID: 25712076]
  76. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020 Jul;12(4):e1615 [PMID: 32003104]
  77. Cancer Res. 1986 Dec;46(12 Pt 1):6387-92 [PMID: 2946403]
  78. ACS Nano. 2021 Mar 23;15(3):4576-4593 [PMID: 33645963]
  79. Nanoscale. 2015 Oct 7;7(37):15214-24 [PMID: 26315610]
  80. Biomaterials. 2016 Dec;109:23-31 [PMID: 27648757]
  81. Biomater Sci. 2017 Feb 28;5(3):378-387 [PMID: 28133653]
  82. Blood Cells Mol Dis. 2010 Jun 15;45(1):67-74 [PMID: 20299253]
  83. Front Chem. 2020 Feb 25;8:121 [PMID: 32161750]
  84. PLoS One. 2014 Sep 17;9(9):e107408 [PMID: 25229244]
  85. ACS Appl Mater Interfaces. 2020 Jan 15;12(2):1997-2008 [PMID: 31867945]
  86. J Mater Sci Mater Med. 2014 May;25(5):1211-25 [PMID: 23975334]
  87. Colloids Surf B Biointerfaces. 2018 Oct 1;170:179-186 [PMID: 29906703]
  88. ACS Nano. 2015 Mar 24;9(3):2405-19 [PMID: 25587629]
  89. IUBMB Life. 2014 Sep;66(9):616-23 [PMID: 25328986]
  90. Nature. 2014 Mar 27;507(7493):519-22 [PMID: 24531764]
  91. Acta Biomater. 2018 Oct 1;79:283-293 [PMID: 30195083]
  92. Acc Chem Res. 2017 Feb 21;50(2):387-395 [PMID: 28145686]
  93. Int J Mol Sci. 2021 Mar 11;22(6): [PMID: 33799879]
  94. Arh Hig Rada Toksikol. 2017 Dec 20;68(4):245-253 [PMID: 29337683]
  95. Nat Commun. 2019 Oct 4;10(1):4520 [PMID: 31586045]
  96. ACS Nano. 2012 Jul 24;6(7):5845-57 [PMID: 22721453]
  97. Nanomedicine (Lond). 2015 Jan;10(2):205-14 [PMID: 25600966]
  98. Methods Mol Biol. 2013;1025:137-55 [PMID: 23918335]
  99. Biomaterials. 2013 Nov;34(33):8521-30 [PMID: 23932500]
  100. ACS Appl Mater Interfaces. 2016 Sep 7;8(35):22808-18 [PMID: 27526263]
  101. Clin Immunol. 2006 Nov;121(2):159-76 [PMID: 16920030]
  102. Biomaterials. 2020 Nov;260:120305 [PMID: 32861016]
  103. J Control Release. 2020 Nov 10;327:546-570 [PMID: 32911013]
  104. Sci Rep. 2018 Jan 31;8(1):1939 [PMID: 29386584]
  105. Angew Chem Int Ed Engl. 2017 Jun 12;56(25):7088-7092 [PMID: 28455941]
  106. Nanomedicine (Lond). 2016 Jan;11(1):81-100 [PMID: 26653875]
  107. Int J Biochem Cell Biol. 2016 Jun;75:180-7 [PMID: 26369869]
  108. Asian J Pharm Sci. 2020 Jul;15(4):482-491 [PMID: 32952671]
  109. Acta Biomater. 2021 Jul 15;129:57-72 [PMID: 34048973]
  110. Biomacromolecules. 2017 Jun 12;18(6):1762-1771 [PMID: 28511014]
  111. Adv Mater. 2010 Mar 5;22(9):920-32 [PMID: 20217815]
  112. Biomaterials. 2021 Jul;274:120888 [PMID: 34029915]
  113. Nat Commun. 2020 Jun 16;11(1):3048 [PMID: 32546688]
  114. Science. 2013 Feb 22;339(6122):971-5 [PMID: 23430657]
  115. Biomaterials. 2010 Jun;31(18):4972-9 [PMID: 20346493]
  116. Small. 2018 Apr;14(16):e1703670 [PMID: 29570231]
  117. ACS Appl Mater Interfaces. 2019 Jun 26;11(25):22085-22095 [PMID: 31150197]
  118. Nat Commun. 2018 Jun 26;9(1):2480 [PMID: 29946125]
  119. J Allergy Clin Immunol. 2018 Nov;142(5):1558-1570 [PMID: 29382591]
  120. Arch Toxicol. 2019 Apr;93(4):871-885 [PMID: 30838431]
  121. ACS Nano. 2020 Jul 28;14(7):9073-9088 [PMID: 32633939]
  122. ACS Appl Mater Interfaces. 2015 Mar 18;7(10):5984-91 [PMID: 25706195]
  123. Adv Colloid Interface Sci. 2007 Oct 31;134-135:167-74 [PMID: 17574200]
  124. Nanoscale. 2019 Oct 28;11(40):18806-18824 [PMID: 31595922]
  125. Angew Chem Int Ed Engl. 2015 Jun 15;54(25):7436-40 [PMID: 25940402]
  126. J Control Release. 2022 Jun;346:32-42 [PMID: 35378211]
  127. J Control Release. 2004 Dec 10;100(3):451-5 [PMID: 15567509]
  128. Water Res. 2021 Feb 15;190:116742 [PMID: 33348070]
  129. J Control Release. 2018 Dec 10;291:135-146 [PMID: 30365993]
  130. Nat Commun. 2020 Sep 10;11(1):4535 [PMID: 32913217]
  131. Nat Nanotechnol. 2012 Dec;7(12):779-86 [PMID: 23212421]
  132. J Nanobiotechnology. 2021 Dec 6;19(1):405 [PMID: 34872569]
  133. Biomaterials. 2014 Aug;35(24):6182-94 [PMID: 24831972]
  134. N Engl J Med. 2021 Aug 5;385(6):493-502 [PMID: 34215024]
  135. Nanoscale. 2018 Feb 1;10(5):2461-2472 [PMID: 29336463]
  136. ACS Omega. 2020 Jul 08;5(28):17347-17355 [PMID: 32715219]
  137. J Cell Physiol. 1978 Oct;97(1):29-36 [PMID: 568628]
  138. Brain Res. 1995 Mar 13;674(1):171-4 [PMID: 7773690]
  139. Blood. 2002 May 15;99(10):3500-4 [PMID: 11986200]
  140. Nanoscale. 2020 Feb 27;12(8):4935-4944 [PMID: 32051994]
  141. Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):16968-73 [PMID: 21969544]
  142. Crit Rev Oncol Hematol. 1997 Jul;26(2):77-100 [PMID: 9298326]
  143. J Am Chem Soc. 2011 Mar 2;133(8):2525-34 [PMID: 21288025]
  144. Ther Deliv. 2012 Dec;3(12):1447-56 [PMID: 23323561]
  145. ACS Nano. 2011 Sep 27;5(9):7503-9 [PMID: 21861491]
  146. J Am Chem Soc. 2012 Feb 1;134(4):2139-47 [PMID: 22191645]
  147. Small. 2011 Sep 19;7(18):2650-60 [PMID: 21913324]
  148. Trends Cell Biol. 2001 Mar;11(3):130-5 [PMID: 11306274]
  149. ACS Nano. 2017 Feb 28;11(2):1397-1411 [PMID: 28075552]
  150. Adv Healthc Mater. 2022 Apr;11(8):e2102270 [PMID: 35032116]
  151. Macromol Biosci. 2016 Sep;16(9):1287-300 [PMID: 27281039]
  152. Biomaterials. 2014 Jul;35(20):5393-5406 [PMID: 24720879]
  153. ACS Nano. 2018 Jun 26;12(6):5241-5252 [PMID: 29800517]
  154. Nanotoxicology. 2017 May;11(4):507-519 [PMID: 28420299]
  155. Int J Nanomedicine. 2020 Nov 30;15:9539-9556 [PMID: 33299308]
  156. Trends Biotechnol. 2017 Mar;35(3):257-264 [PMID: 27663778]
  157. N Engl J Med. 2018 Jul 5;379(1):11-21 [PMID: 29972753]
  158. ACS Appl Mater Interfaces. 2013 Dec 26;5(24):13171-9 [PMID: 24245615]
  159. Nat Nanotechnol. 2019 Dec;14(12):1084-1087 [PMID: 31802031]
  160. Bioconjug Chem. 2017 Feb 15;28(2):471-480 [PMID: 27977155]
  161. RSC Adv. 2019 Feb 5;9(8):4435-4444 [PMID: 35520163]
  162. Bioconjug Chem. 2015 Dec 16;26(12):2419-28 [PMID: 26505780]
  163. ACS Nano. 2020 Jun 23;14(6):7216-7226 [PMID: 32379425]
  164. J Neurochem. 2005 May;93(4):1038-46 [PMID: 15857407]
  165. Biochem Biophys Res Commun. 2016 Nov 25;480(4):690-695 [PMID: 27983983]
  166. ACS Nano. 2011 Sep 27;5(9):7155-67 [PMID: 21866933]
  167. Part Fibre Toxicol. 2014 Nov 26;11:64 [PMID: 25425420]
  168. Sci Rep. 2017 Jul 12;7(1):5178 [PMID: 28701707]
  169. Adv Mater. 2019 Nov;31(45):e1805740 [PMID: 30589115]
  170. Adv Drug Deliv Rev. 2001 Mar 23;47(1):65-81 [PMID: 11251246]
  171. Nanoscale. 2014 Jun 7;6(11):6046-56 [PMID: 24777583]
  172. Nano Lett. 2012 Oct 10;12(10):5304-10 [PMID: 22920324]
  173. Int J Mol Sci. 2020 Feb 03;21(3): [PMID: 32028729]
  174. Pharmaceutics. 2022 May 09;14(5): [PMID: 35631604]
  175. Nat Nanotechnol. 2019 Mar;14(3):260-268 [PMID: 30643271]
  176. Sci Adv. 2020 Mar 27;6(13):eaaz6108 [PMID: 32258408]
  177. Colloids Surf B Biointerfaces. 2013 Feb 1;102:511-8 [PMID: 23107938]
  178. Adv Drug Deliv Rev. 2020;159:344-363 [PMID: 32622021]
  179. Int J Nanomedicine. 2020 Nov 10;15:8845-8862 [PMID: 33204091]
  180. ACS Nano. 2014 May 27;8(5):4608-20 [PMID: 24758495]
  181. Nanoscale. 2017 Jan 7;9(1):349-354 [PMID: 27924334]
  182. Nat Commun. 2019 Aug 8;10(1):3561 [PMID: 31395892]
  183. Ecotoxicol Environ Saf. 2018 Nov 30;164:140-148 [PMID: 30107323]
  184. Methods Mol Biol. 2012;757:471-86 [PMID: 21909928]
  185. ACS Nano. 2010 Jul 27;4(7):3623-32 [PMID: 20553005]
  186. Curr Opin Immunol. 2015 Aug;35:107-12 [PMID: 26172292]
  187. Nanotechnology. 2012 Feb 3;23(4):045101 [PMID: 22214761]
  188. ACS Nano. 2017 Dec 26;11(12):11773-11776 [PMID: 29206030]
  189. NanoImpact. 2022 Jan;25:100367 [PMID: 35559897]
  190. Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6662-7 [PMID: 22451913]
  191. Nanomaterials (Basel). 2020 Apr 27;10(5): [PMID: 32349272]
  192. Nanoscale. 2019 May 9;11(18):8760-8775 [PMID: 30793730]
  193. Toxicol In Vitro. 2017 Aug;42:150-160 [PMID: 28433809]
  194. Angew Chem Int Ed Engl. 2020 Nov 2;59(45):20083-20089 [PMID: 32662132]
  195. ACS Nano. 2022 Feb 22;16(2):2088-2100 [PMID: 35040637]
  196. Biomaterials. 2015 Apr;46:1-12 [PMID: 25678111]
  197. ACS Nano. 2015 Jul 28;9(7):6696-705 [PMID: 26030129]
  198. J Nanobiotechnology. 2021 Dec 28;19(1):453 [PMID: 34963449]
  199. Front Bioeng Biotechnol. 2021 Mar 31;9:646708 [PMID: 33869157]
  200. Biomaterials. 2013 Apr;34(12):2969-79 [PMID: 23380351]
  201. J Drug Target. 2010 Dec;18(10):842-8 [PMID: 20849354]
  202. J Am Chem Soc. 2013 Nov 20;135(46):17359-68 [PMID: 24215358]
  203. Proteomics. 2011 Dec;11(23):4569-77 [PMID: 21956884]
  204. Clin Chim Acta. 2020 Feb;501:102-111 [PMID: 31678275]
  205. Biomater Sci. 2018 Sep 25;6(10):2681-2693 [PMID: 30151516]
  206. Adv Drug Deliv Rev. 2008 May 22;60(8):876-85 [PMID: 18423779]
  207. ACS Appl Mater Interfaces. 2017 Jan 25;9(3):2159-2168 [PMID: 28050902]
  208. J Biol Chem. 2002 Feb 15;277(7):5082-9 [PMID: 11741917]
  209. Pharmaceutics. 2021 Jun 12;13(6): [PMID: 34204664]
  210. Curr Pharm Des. 2018;24(28):3283-3296 [PMID: 30062957]
  211. Adv Mater. 2021 Jan;33(3):e2006160 [PMID: 33296121]

Grants

  1. P30 CA023168/NCI NIH HHS
  2. R01 CA232419/NCI NIH HHS
  3. R01 CA258737/NCI NIH HHS

MeSH Term

Humans
Protein Corona
Blood Proteins
Drug Delivery Systems
Protein Binding
Nanoparticles

Chemicals

Protein Corona
Blood Proteins

Word Cloud

Created with Highcharts 10.0.0coronaproteindeliveryserumnanoparticlestargetProteinreachproteinsbindingknownformationviamaytargetingdrugenhancenanoparticlesystemicallydeliveredtissuesmustfirstcirculatelongenoughextravasatechallengeparticlesendengagingundergoimmunecellrecognitionprematureclearancealsodifficultpreventevenartificialprotection"stealth"coatingproblematiccaninterfereinteractionligandstissue-specificreceptorsabrogateso-calledactiveprocesshenceefficiencyHoweverrecentstudiesshowcirculatingactivelyexploiteddownstreamreviewsummarizesissuestraditionalstrategiescontrolavoidingoverridingwellemergingeffortsorgansconcludesdiscussionprevailingchallengesexploitingdevelopmentcorona:Friendfoe?Co-optingDrugNanoparticlesStealthTargeting

Similar Articles

Cited By