Low-level EMF effects on wildlife and plants: What research tells us about an ecosystem approach.

B Blake Levitt, Henry C Lai, Albert M Manville
Author Information
  1. B Blake Levitt: National Association of Science Writers, Berkeley, CA, United States.
  2. Henry C Lai: Department of Bioengineering, University of Washington, Seattle, WA, United States.
  3. Albert M Manville: Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington, DC, United States.

Abstract

There is enough evidence to indicate we may be damaging non-human species at ecosystem and biosphere levels across all taxa from rising background levels of anthropogenic non-ionizing electromagnetic fields (EMF) from 0 Hz to 300 GHz. The focus of this Perspective paper is on the unique physiology of non-human species, their extraordinary sensitivity to both natural and anthropogenic EMF, and the likelihood that artificial EMF in the static, extremely low frequency (ELF) and radiofrequency (RF) ranges of the non-ionizing electromagnetic spectrum are capable at very low intensities of adversely affecting both fauna and flora in all species studied. Any existing exposure standards are for humans only; wildlife is unprotected, including within the safety margins of existing guidelines, which are inappropriate for trans-species sensitivities and different non-human physiology. Mechanistic, genotoxic, and potential ecosystem effects are discussed.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):12022-7 [PMID: 22778440]
  2. Electromagn Biol Med. 2022 Apr 3;41(2):230-255 [PMID: 35438055]
  3. Health Phys. 2020 May;118(5):483-524 [PMID: 32167495]
  4. Bioelectromagnetics. 1989;10(3):215-21 [PMID: 2665748]
  5. Electromagn Biol Med. 2019;38(4):231-248 [PMID: 31450976]
  6. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017 Dec;203(12):1029-1036 [PMID: 28916947]
  7. Sci Rep. 2018 Mar 2;8(1):3924 [PMID: 29500425]
  8. Biosystems. 1981;13(3):181-201 [PMID: 7213948]
  9. Bioelectromagnetics. 1997;18(6):455-61 [PMID: 9261543]
  10. Protoplasma. 2023 May;260(3):767-786 [PMID: 36129584]
  11. J Exp Biol. 1997;200(Pt 9):1363-8 [PMID: 9319256]
  12. PLoS One. 2015 May 15;10(5):e0124728 [PMID: 25978736]
  13. Elife. 2019 Feb 25;8: [PMID: 30801245]
  14. J Exp Biol. 1999 May;202(# (Pt 10)):1205-15 [PMID: 10210662]
  15. Nature. 2014 May 15;509(7500):353-6 [PMID: 24805233]
  16. Nature. 2008 Aug 21;454(7207):1014-8 [PMID: 18641630]
  17. J R Soc Interface. 2010 Apr 6;7 Suppl 2:S135-46 [PMID: 20129953]
  18. PLoS One. 2007 Sep 26;2(9):e937 [PMID: 17895978]
  19. Biophys J. 2000 Feb;78(2):707-18 [PMID: 10653784]
  20. Bioinformation. 2018 Dec 21;14(9):421-424 [PMID: 31223202]
  21. Neuron. 2002 May 16;34(4):503-6 [PMID: 12062034]
  22. Animals (Basel). 2022 Sep 14;12(18): [PMID: 36139284]
  23. Curr Biol. 2015 Feb 2;25(3):392-396 [PMID: 25601546]
  24. Sci Total Environ. 2016 Feb 1;543(Pt A):662-669 [PMID: 26615484]
  25. Appl Environ Microbiol. 2016 Aug 30;82(18):5595-602 [PMID: 27401974]
  26. J Exp Biol. 2009 Nov;212(Pt 21):3473-7 [PMID: 19837889]
  27. Science. 1982 Nov 26;218(4575):916-8 [PMID: 7134985]
  28. Mutat Res Rev Mutat Res. 2019 Jul - Sep;781:53-62 [PMID: 31416578]
  29. Annu Rev Biophys. 2016 Jul 5;45:299-344 [PMID: 27216936]
  30. Curr Opin Neurobiol. 2005 Aug;15(4):406-14 [PMID: 16006116]
  31. Environ Evid. 2023 May 11;12(1):9 [PMID: 39294811]
  32. PLoS One. 2007 Mar 14;2(3):e297 [PMID: 17372629]
  33. Planta. 2007 Feb;225(3):615-24 [PMID: 16955271]
  34. Curr Biol. 2013 Feb 18;23(4):312-6 [PMID: 23394828]
  35. Brain Behav Evol. 1996;48(1):27-54 [PMID: 8828862]
  36. Mol Biol Evol. 2007 Apr;24(4):948-55 [PMID: 17244599]
  37. J Exp Biol. 1998 Dec;201 (Pt 23):3257-61 [PMID: 9808838]
  38. Sci Rep. 2018 May 21;8(1):7932 [PMID: 29785039]
  39. Rev Environ Health. 2021 Sep 27;37(4):531-558 [PMID: 34563106]
  40. Antonie Van Leeuwenhoek. 2017 Feb;110(2):177-186 [PMID: 27766438]
  41. J Biol. 2009;8(6):55 [PMID: 19591650]
  42. Sci Total Environ. 2015 Jun 15;518-519:58-60 [PMID: 25747364]
  43. Biol Lett. 2014 Jun;10(6): [PMID: 24899681]
  44. Bioelectromagnetics. 2015 Jan;36(1):45-54 [PMID: 25399679]
  45. Toxicol Int. 2011 Jan;18(1):70-2 [PMID: 21430927]
  46. Curr Biol. 2014 Feb 17;24(4):446-50 [PMID: 24508165]
  47. Mutat Res. 2007 Jan 10;626(1-2):69-78 [PMID: 17045516]
  48. J R Soc Interface. 2014 Oct 6;11(99): [PMID: 25056214]
  49. Electromagn Biol Med. 2021 Jul 3;40(3):393-407 [PMID: 33687298]
  50. J R Soc Interface. 2019 Sep 27;16(158):20190295 [PMID: 31480921]
  51. Anim Cogn. 2020 Nov;23(6):1051-1061 [PMID: 32975654]
  52. J Exp Biol. 1999 May;202(# (Pt 10)):1349-55 [PMID: 10210675]
  53. Front Behav Neurosci. 2016 Mar 22;10:55 [PMID: 27047356]
  54. Front Public Health. 2022 Sep 15;10:994758 [PMID: 36187692]
  55. Electromagn Biol Med. 2013 Sep;32(3):315-32 [PMID: 23320633]
  56. PeerJ. 2018 Oct 31;6:e5819 [PMID: 30402349]
  57. Soc Gen Physiol Ser. 1992;47:225-40 [PMID: 1369765]
  58. Nature. 2004 May 13;429(6988):177-80 [PMID: 15141211]
  59. Sci Total Environ. 2021 May 1;767:144913 [PMID: 33636787]
  60. Sci Rep. 2015 Oct 12;5:14914 [PMID: 26456585]
  61. Environ Int. 2013 Jan;51:116-40 [PMID: 23261519]
  62. Biophys J. 2009 Apr 22;96(8):3451-7 [PMID: 19383488]
  63. Bull Entomol Res. 2012 Aug;102(4):461-7 [PMID: 22313997]
  64. Naturwissenschaften. 2004 Dec;91(12):585-8 [PMID: 15551029]
  65. Rev Environ Health. 2021 Jul 08;37(3):327-406 [PMID: 34243228]
  66. Biophys J. 2017 Oct 3;113(7):1475-1484 [PMID: 28978441]
  67. Curr Biol. 2017 Apr 24;27(8):1236-1240 [PMID: 28416118]
  68. Sci Rep. 2020 Jan 16;10(1):461 [PMID: 31949179]
  69. Electromagn Biol Med. 2012 Jun;31(2):151-65 [PMID: 22268919]
  70. Genes (Basel). 2022 Sep 08;13(9): [PMID: 36140781]
  71. PLoS One. 2008 Feb 27;3(2):e1676 [PMID: 18301753]
  72. J Exp Biol. 2007 Jul;210(Pt 13):2300-10 [PMID: 17575035]
  73. J Exp Biol. 2020 Feb 25;223(Pt 4): [PMID: 32029460]
  74. J R Soc Interface. 2010 Apr 6;7 Suppl 2:S163-77 [PMID: 19864263]
  75. PLoS One. 2009 Jul 16;4(7):e6246 [PMID: 19606214]
  76. Behav Biol. 1976 Aug;17(4):573-8 [PMID: 971203]
  77. Pathophysiology. 2009 Aug;16(2-3):191-9 [PMID: 19264463]
  78. Biosensors (Basel). 2014 Jul 24;4(3):221-42 [PMID: 25587420]
  79. Sci Total Environ. 2019 Apr 15;661:553-562 [PMID: 30682608]
  80. Nat Commun. 2014 Jun 24;5:4164 [PMID: 24960099]
  81. J R Soc Interface. 2015 Feb 6;12(103): [PMID: 25540238]
  82. Rev Environ Health. 2021 May 27;37(1):81-122 [PMID: 34047144]
  83. Science. 1975 Oct 24;190(4212):377-9 [PMID: 170679]
  84. J R Soc Interface. 2017 Aug;14(133): [PMID: 28794163]
  85. Sci Total Environ. 2014 Oct 15;496:314-316 [PMID: 25089692]

MeSH Term

Animals
Ecosystem
Animals, Wild
DNA Damage
Probability

Word Cloud

Created with Highcharts 10.0.0electromagneticEMFnon-humanspeciesecosystemnon-ionizingfieldswildlifelevelsanthropogenicphysiologylowfrequencyradiofrequencyexistingeffectsenoughevidenceindicatemaydamagingbiosphereacrosstaxarisingbackground0Hz300GHzfocusPerspectivepaperuniqueextraordinarysensitivitynaturallikelihoodartificialstaticextremelyELFRFrangesspectrumcapableintensitiesadverselyaffectingfaunaflorastudiedexposurestandardshumansunprotectedincludingwithinsafetymarginsguidelinesinappropriatetrans-speciessensitivitiesdifferentMechanisticgenotoxicpotentialdiscussedLow-levelplants:researchtellsusapproachDNAcryptochromeselectro/magnetoreceptionradiationstatic/extremely-low

Similar Articles

Cited By