Rap1b-loss increases neutrophil lactate dehydrogenase activity to enhance neutrophil migration and acute inflammation .

Chanchal Sur Chowdhury, Elizabeth Wareham, Juying Xu, Sachin Kumar, Matthew Kofron, Sribalaji Lakshmikanthan, Magdalena Chrzanowska, Marie-Dominique Filippi
Author Information
  1. Chanchal Sur Chowdhury: Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States.
  2. Elizabeth Wareham: Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States.
  3. Juying Xu: Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States.
  4. Sachin Kumar: Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States.
  5. Matthew Kofron: Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States.
  6. Sribalaji Lakshmikanthan: Versiti Blood Research Institute, Milwaukee, WI, United States.
  7. Magdalena Chrzanowska: Versiti Blood Research Institute, Milwaukee, WI, United States.
  8. Marie-Dominique Filippi: Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States.

Abstract

Introduction: Neutrophils are critical for host immune defense; yet, aberrant neutrophil tissue infiltration triggers tissue damage. Neutrophils are heterogeneous functionally, and adopt 'normal' or 'pathogenic' effector function responses. Understanding neutrophil heterogeneity could provide specificity in targeting inflammation. We previously identified a signaling pathway that suppresses neutrophilmediated inflammation via integrin-mediated Rap1b signaling pathway.
Methods: Here, we used Rap1-deficient neutrophils and proteomics to identify pathways that specifically control pathogenic neutrophil effector function.
Results: We show neutrophil acidity is normally prevented by Rap1b during normal immune response with loss of Rap1b resulting in increased neutrophil acidity via enhanced Ldha activity and abnormal neutrophil behavior. Acidity drives the formation of abnormal invasive-like protrusions in neutrophils, causing a shift to transcellular migration through endothelial cells. Acidity increases neutrophil extracellular matrix degradation activity and increases vascular leakage in vivo. Pathogenic inflammatory condition of ischemia/reperfusion injury is associated with increased neutrophil transcellular migration and vascular leakage. Reducing acidity with lactate dehydrogenase inhibition in vivo limits tissue infiltration of pathogenic neutrophils but less so of normal neutrophils, and reduces vascular leakage.
Discussion: Acidic milieu renders neutrophils more dependent on Ldha activity such that their effector functions are more readily inhibited by small molecule inhibitor of Ldha activity, which offers a therapeutic window for antilactate dehydrogenase treatment in specific targeting of pathogenic neutrophils .

Keywords

References

  1. J Vis Exp. 2016 Dec 22;(118): [PMID: 28060277]
  2. Eur J Cell Biol. 2011 Feb-Mar;90(2-3):115-27 [PMID: 20609496]
  3. J Immunol. 2010 Apr 15;184(8):4062-8 [PMID: 20368286]
  4. J Exp Med. 2006 Jun 12;203(6):1519-32 [PMID: 16754715]
  5. J Immunol. 1999 Apr 15;162(8):4849-57 [PMID: 10202029]
  6. Shock. 2013 Dec;40(6):463-70 [PMID: 24088997]
  7. Mitochondrion. 2014 Jul;17:76-100 [PMID: 24929216]
  8. Methods Mol Biol. 2007;370:55-66 [PMID: 17416987]
  9. Cell. 2017 May 4;169(4):570-586 [PMID: 28475890]
  10. Cell Res. 2015 Jul;25(7):771-84 [PMID: 26045163]
  11. J Clin Invest. 2005 Mar;115(3):680-7 [PMID: 15696195]
  12. Kidney Int. 1980 Jul;18(1):68-76 [PMID: 7218661]
  13. J Immunol. 2006 Jan 15;176(2):1163-71 [PMID: 16394005]
  14. Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2037-42 [PMID: 20133848]
  15. Adv Immunol. 2016;129:25-53 [PMID: 26791857]
  16. J Clin Invest. 2013 Sep;123(9):3685-92 [PMID: 23999443]
  17. Nat Commun. 2020 Jul 15;11(1):3547 [PMID: 32669546]
  18. J Pharmacol Exp Ther. 1984 Feb;228(2):510-22 [PMID: 6420544]
  19. Immunology. 2015 Jun;145(2):213-24 [PMID: 25545227]
  20. Circulation. 1983 May;67(5):1016-23 [PMID: 6831665]
  21. Clin Biochem. 2017 Nov;50(16-17):956-958 [PMID: 28552399]
  22. Nat Med. 2011 Nov 07;17(11):1381-90 [PMID: 22064428]
  23. Blood. 2007 Feb 1;109(3):1257-64 [PMID: 16990606]
  24. Physiol Rev. 2001 Jan;81(1):153-208 [PMID: 11152757]
  25. PLoS One. 2015 Sep 04;10(9):e0137221 [PMID: 26340269]
  26. Nat Immunol. 2011 Jun 26;12(8):761-9 [PMID: 21706006]
  27. Front Immunol. 2017 Feb 28;8:184 [PMID: 28293240]
  28. J Leukoc Biol. 2015 Oct;98(4):549-56 [PMID: 25977288]
  29. Crit Rev Clin Lab Sci. 2013 Jan-Feb;50(1):23-36 [PMID: 23480440]
  30. Rheumatology (Oxford). 2010 Sep;49(9):1618-31 [PMID: 20338884]
  31. FEBS Lett. 1997 Dec 29;420(2-3):196-200 [PMID: 9459309]
  32. J Cell Sci. 2003 Feb 1;116(Pt 3):435-40 [PMID: 12508104]
  33. Am J Physiol. 1990 Jul;259(1 Pt 1):C169-79 [PMID: 2164781]
  34. Blood. 2011 Jan 20;117(3):942-52 [PMID: 21030556]
  35. Sci STKE. 2007 Aug 21;2007(400):pl4 [PMID: 17712138]
  36. Age Ageing. 2009 Jan;38(1):4-5 [PMID: 19141505]
  37. Neuron. 2014 Jan 22;81(2):314-20 [PMID: 24462096]
  38. Biochim Biophys Acta Mol Basis Dis. 2019 Dec 1;1865(12):165542 [PMID: 31473341]
  39. Cardiovasc Res. 2010 Jul 15;87(2):281-90 [PMID: 20472564]
  40. Mol Cell Pediatr. 2016 Dec;3(1):38 [PMID: 27868161]
  41. J Vis Exp. 2013 Jul 10;(77):e50586 [PMID: 23892876]
  42. Wound Repair Regen. 2003 Nov-Dec;11(6):504-9 [PMID: 14617293]
  43. Front Immunol. 2014 May 08;5:203 [PMID: 24847328]
  44. Immunity. 2007 Jun;26(6):784-97 [PMID: 17570692]
  45. Lab Invest. 1986 May;54(5):574-8 [PMID: 3702345]
  46. Biochem Biophys Res Commun. 1990 Apr 30;168(2):677-82 [PMID: 2334430]
  47. Am J Pathol. 1997 Feb;150(2):409-15 [PMID: 9033256]
  48. J Cell Sci. 2009 Sep 1;122(Pt 17):3025-35 [PMID: 19692589]
  49. Blood. 2011 Aug 18;118(7):2015-26 [PMID: 21636859]
  50. J Exp Med. 2014 Aug 25;211(9):1741-58 [PMID: 25092872]
  51. Front Immunol. 2017 Aug 15;8:975 [PMID: 28861083]
  52. Open Biol. 2012 Nov;2(11):120134 [PMID: 23226600]
  53. J Cell Biol. 2004 Oct 25;167(2):377-88 [PMID: 15504916]
  54. Clin Chim Acta. 1988 Mar 31;173(1):89-98 [PMID: 3383424]

Grants

  1. R01 HL111582/NHLBI NIH HHS

MeSH Term

Humans
Neutrophils
Endothelial Cells
Cell Movement
Neutrophil Infiltration
Inflammation
L-Lactate Dehydrogenase
rap GTP-Binding Proteins

Chemicals

L-Lactate Dehydrogenase
RAP1B protein, human
rap GTP-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0neutrophilneutrophilsactivityinflammationLdhamigrationvascularleakagetissueeffectorRap1bpathogenicacidityincreasesdehydrogenaseNeutrophilsimmuneinfiltrationfunctiontargetingsignalingpathwayvianormalincreasedabnormalAciditytranscellularvivolactateIntroduction:criticalhostdefenseyetaberranttriggersdamageheterogeneousfunctionallyadopt'normal''pathogenic'responsesUnderstandingheterogeneityprovidespecificitypreviouslyidentifiedsuppressesneutrophilmediatedintegrin-mediatedMethods:usedRap1-deficientproteomicsidentifypathwaysspecificallycontrolResults:shownormallypreventedresponselossresultingenhancedbehaviordrivesformationinvasive-likeprotrusionscausingshiftendothelialcellsextracellularmatrixdegradationPathogenicinflammatoryconditionischemia/reperfusioninjuryassociatedReducinginhibitionlimitslessreducesDiscussion:AcidicmilieurendersdependentfunctionsreadilyinhibitedsmallmoleculeinhibitorofferstherapeuticwindowantilactatetreatmentspecificRap1b-lossenhanceacute

Similar Articles

Cited By (2)