Chromatin dynamics associated with seed desiccation tolerance/sensitivity at early germination in .

Naoto Sano, Jaiana Malabarba, Zhijuan Chen, Sylvain Gaillard, David Windels, Jerome Verdier
Author Information
  1. Naoto Sano: Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France.
  2. Jaiana Malabarba: Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France.
  3. Zhijuan Chen: Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France.
  4. Sylvain Gaillard: Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France.
  5. David Windels: Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France.
  6. Jerome Verdier: Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France.

Abstract

Desiccation tolerance (DT) has contributed greatly to the adaptation of land plants to severe water-deficient conditions. DT is mostly observed in reproductive parts in flowering plants such as seeds. The seed DT is lost at early post germination stage but is temporally re-inducible in 1 mm radicles during the so-called DT window following a PEG treatment before being permanently silenced in 5 mm radicles of germinating seeds. The molecular mechanisms that activate/reactivate/silence DT in developing and germinating seeds have not yet been elucidated. Here, we analyzed chromatin dynamics related to re-inducibility of DT before and after the DT window at early germination in radicles to determine if DT-associated genes were transcriptionally regulated at the chromatin levels. Comparative transcriptome analysis of these radicles identified 948 genes as DT re-induction-related genes, positively correlated with DT re-induction. ATAC-Seq analyses revealed that the chromatin state of genomic regions containing these genes was clearly modulated by PEG treatment and affected by growth stages with opened chromatin in 1 mm radicles with PEG (R1P); intermediate openness in 1 mm radicles without PEG (R1); and condensed chromatin in 5 mm radicles without PEG (R5). In contrast, we also showed that the 103 genes negatively correlated with the re-induction of DT did not show any transcriptional regulation at the chromatin level. Additionally, ChIP-Seq analyses for repressive marks H2AK119ub and H3K27me3 detected a prominent signal of H3K27me3 on the DT re-induction-related gene sequences at R5 but not in R1 and R1P. Moreover, no clear H2AK119ub marks was observed on the DT re-induction-related gene sequences at both developmental radicle stages, suggesting that silencing of DT process after germination will be mainly due to H3K27me3 marks by the action of the PRC2 complex, without involvement of PRC1 complex. The dynamic of chromatin changes associated with H3K27me3 were also confirmed on seed-specific genes encoding potential DT-related proteins such as LEAs, oleosins and transcriptional factors. However, several transcriptional factors did not show a clear link between their decrease of chromatin openness and H3K27me3 levels, suggesting that their accessibility may also be regulated by additional factors, such as other histone modifications. Finally, in order to make these comprehensive genome-wide analyses of transcript and chromatin dynamics useful to the scientific community working on early germination and DT, we generated a dedicated genome browser containing all these data and publicly available at https://iris.angers.inrae.fr/mtseedepiatlas/jbrowse/?data=Mtruncatula.

Keywords

References

  1. J Exp Bot. 2013 Nov;64(14):4559-73 [PMID: 24043848]
  2. Plant J. 2022 Feb;109(3):675-692 [PMID: 34783109]
  3. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  4. Plant Cell Physiol. 2021 Dec 3;62(10):1615-1629 [PMID: 34279666]
  5. Plant J. 2006 Sep;47(5):735-50 [PMID: 16923015]
  6. J Exp Biol. 2006 May;209(Pt 9):1575-84 [PMID: 16621938]
  7. Int J Mol Sci. 2021 Jul 14;22(14): [PMID: 34299153]
  8. Plant Physiol Biochem. 2007 Jun-Jul;45(6-7):389-99 [PMID: 17544288]
  9. Dev Comp Immunol. 2020 Mar;104:103556 [PMID: 31747541]
  10. BMC Plant Biol. 2021 Mar 1;21(1):124 [PMID: 33648457]
  11. Plants (Basel). 2021 Sep 11;10(9): [PMID: 34579418]
  12. Plant Cell Environ. 2017 Oct;40(10):2292-2306 [PMID: 28730594]
  13. Epigenetics Chromatin. 2020 Apr 22;13(1):21 [PMID: 32321568]
  14. Plant Signal Behav. 2009 Nov;4(11):1010-2 [PMID: 20009545]
  15. Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5 [PMID: 27079975]
  16. Mol Plant. 2017 Oct 9;10(10):1307-1320 [PMID: 28917589]
  17. Curr Biol. 2013 Jul 22;23(14):1324-9 [PMID: 23810531]
  18. Plant J. 2020 Mar;101(6):1349-1367 [PMID: 31680354]
  19. Front Plant Sci. 2019 Mar 12;10:290 [PMID: 30915095]
  20. New Phytol. 2014 Jul;203(1):81-93 [PMID: 24697728]
  21. J Exp Bot. 2005 Aug;56(418):2119-30 [PMID: 15967778]
  22. Front Plant Sci. 2013 Dec 11;4:497 [PMID: 24376450]
  23. Nat Plants. 2018 Dec;4(12):1017-1025 [PMID: 30397259]
  24. Plant Cell. 2015 Oct;27(10):2692-708 [PMID: 26410298]
  25. PLoS One. 2011;6(12):e29123 [PMID: 22195004]
  26. Proc Natl Acad Sci U S A. 2021 Aug 17;118(33): [PMID: 34385324]
  27. Plant Cell. 2016 Oct;28(10):2365-2384 [PMID: 27655842]
  28. Integr Comp Biol. 2005 Nov;45(5):685-95 [PMID: 21676818]
  29. Plant Cell. 2006 Jul;18(7):1642-51 [PMID: 16731585]
  30. Nat Plants. 2017 Mar 27;3:17038 [PMID: 28346448]
  31. Planta. 2015 Mar;241(3):563-77 [PMID: 25567203]
  32. Nat Commun. 2021 Jan 12;12(1):315 [PMID: 33436613]
  33. Plant Methods. 2018 Dec 20;14:113 [PMID: 30598689]
  34. Biotechniques. 2003 Feb;34(2):374-8 [PMID: 12613259]
  35. Plant Cell Physiol. 2009 Feb;50(2):243-53 [PMID: 19073649]
  36. Plants (Basel). 2021 Jun 08;10(6): [PMID: 34201297]
  37. Plant Physiol. 2006 Apr;140(4):1418-36 [PMID: 16461389]
  38. Nat Rev Genet. 2013 Dec;14(12):853-64 [PMID: 24217316]
  39. Genome Res. 2018 Oct;28(10):1494-1507 [PMID: 30154222]
  40. Bioinformatics. 2016 Oct 1;32(19):3047-8 [PMID: 27312411]
  41. Plant J. 2008 Sep;55(5):798-809 [PMID: 18485063]
  42. Plant Cell. 1994 May;6(5):589-600 [PMID: 12244252]
  43. Bioinformatics. 2020 Apr 15;36(8):2628-2629 [PMID: 31882993]
  44. Sci Adv. 2015 Dec 04;1(11):e1500737 [PMID: 26665172]
  45. Genome Biol. 2008;9(9):R137 [PMID: 18798982]
  46. Plant Reprod. 2018 Sep;31(3):291-307 [PMID: 29797091]
  47. Plant Cell. 1994 Aug;6(8):1049-1064 [PMID: 12244265]
  48. Plant Cell Environ. 2010 Mar;33(3):418-30 [PMID: 20002332]
  49. 3 Biotech. 2019 May;9(5):192 [PMID: 31065492]
  50. Int J Mol Sci. 2020 Dec 24;22(1): [PMID: 33374189]
  51. Plant Physiol. 1993 Aug;102(4):1185-1191 [PMID: 12231895]
  52. Planta. 2015 Aug;242(2):435-49 [PMID: 25809152]
  53. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  54. Curr Opin Plant Biol. 2020 Apr;54:69-78 [PMID: 32113082]
  55. Sci Rep. 2017 Jul 5;7(1):4660 [PMID: 28680085]
  56. Int J Mol Sci. 2021 May 11;22(10): [PMID: 34064729]
  57. J Exp Bot. 2017 Feb 1;68(4):827-841 [PMID: 28391329]
  58. Annu Rev Plant Biol. 2020 Apr 29;71:435-460 [PMID: 32040342]
  59. Plant Cell. 2013 Dec;25(12):4863-78 [PMID: 24326588]
  60. Trends Plant Sci. 2013 Mar;18(3):125-32 [PMID: 23182343]
  61. Plant Cell. 2011 Apr;23(4):1404-15 [PMID: 21467583]
  62. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  63. Plant Methods. 2013 Jul 26;9:31 [PMID: 23886449]
  64. Nat Methods. 2017 Apr;14(4):417-419 [PMID: 28263959]
  65. Front Plant Sci. 2022 Apr 25;13:865361 [PMID: 35548305]
  66. Int J Mol Sci. 2022 Sep 23;23(19): [PMID: 36232500]
  67. Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):E5232-41 [PMID: 27551092]
  68. New Phytol. 2020 Jul;227(1):65-83 [PMID: 32129897]
  69. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
  70. Plant Physiol. 2013 Oct;163(2):757-74 [PMID: 23929721]
  71. Trends Cell Biol. 2019 Aug;29(8):660-671 [PMID: 31178244]
  72. Methods Mol Biol. 2018;1761:231-248 [PMID: 29525962]
  73. Data Brief. 2022 Jan 05;40:107793 [PMID: 35036490]
  74. Planta. 2008 Jan;227(2):331-9 [PMID: 17849147]

Word Cloud

Created with Highcharts 10.0.0DTchromatinradiclesgerminationgenesH3K27me3PEGearlyseedsseed1 mmdynamicsre-induction-relatedanalyseswithoutalsotranscriptionalmarksH2AK119ubfactorstoleranceplantsobservedwindowtreatment5 mmgerminatingregulatedlevelscorrelatedre-inductionATAC-SeqcontainingstagesR1PopennessR1R5showChIP-SeqgenesequencesclearsuggestingcomplexassociateddesiccationDesiccationcontributedgreatlyadaptationlandseverewater-deficientconditionsmostlyreproductivepartsfloweringlostpoststagetemporallyre-inducibleso-calledfollowingpermanentlysilencedmolecularmechanismsactivate/reactivate/silencedevelopingyetelucidatedanalyzedrelatedre-inducibilitydetermineDT-associatedtranscriptionallyComparativetranscriptomeanalysisidentified948positivelyrevealedstategenomicregionsclearlymodulatedaffectedgrowthopenedintermediatecondensedcontrastshowed103negativelyregulationlevelAdditionallyrepressivedetectedprominentsignalMoreoverdevelopmentalradiclesilencingprocesswillmainlydueactionPRC2involvementPRC1dynamicchangesconfirmedseed-specificencodingpotentialDT-relatedproteinsLEAsoleosinsHoweverseverallinkdecreaseaccessibilitymayadditionalhistonemodificationsFinallyordermakecomprehensivegenome-widetranscriptusefulscientificcommunityworkinggenerateddedicatedgenomebrowserdatapubliclyavailablehttps://irisangersinraefr/mtseedepiatlas/jbrowse/?data=MtruncatulaChromatintolerance/sensitivityMedicagotruncatula

Similar Articles

Cited By