Genomic diversification of the specialized parasite of the fungus-growing ant symbiosis.

Kirsten Gotting, Daniel S May, Jeffrey Sosa-Calvo, Lily Khadempour, Charlotte B Francoeur, Aileen Berasategui, Margaret W Thairu, Shelby Sandstrom, Caitlin M Carlson, Marc G Chevrette, M��nica T Pupo, Tim S Bugni, Ted R Schultz, J Spencer Johnston, Nicole M Gerardo, Cameron R Currie
Author Information
  1. Kirsten Gotting: Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706. ORCID
  2. Daniel S May: Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706. ORCID
  3. Jeffrey Sosa-Calvo: Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560. ORCID
  4. Lily Khadempour: Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ 07102.
  5. Charlotte B Francoeur: Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706. ORCID
  6. Aileen Berasategui: Department of Biology, Emory University, Atlanta, GA 30322.
  7. Margaret W Thairu: Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706.
  8. Shelby Sandstrom: Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706.
  9. Caitlin M Carlson: Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706.
  10. Marc G Chevrette: Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53705. ORCID
  11. M��nica T Pupo: School of Pharmaceutical Sciences of Ribeir��o Preto, University of S��o Paulo, Ribeir��o Preto, SP 14040-903, Brazil. ORCID
  12. Tim S Bugni: Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705.
  13. Ted R Schultz: Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560. ORCID
  14. J Spencer Johnston: Department of Entomology, Texas A&M University, College Station, TX 77843.
  15. Nicole M Gerardo: Department of Biology, Emory University, Atlanta, GA 30322. ORCID
  16. Cameron R Currie: Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706.

Abstract

Fungi shape the diversity of life. Characterizing the evolution of fungi is critical to understanding symbiotic associations across kingdoms. In this study, we investigate the genomic and metabolomic diversity of the genus , a specialized parasite of fungus-growing ant gardens. Based on 25 high-quality draft genomes, we show that forms a monophyletic group arising from a mycoparasitic fungal ancestor 61.82 million years ago (Mya). Across the evolutionary history of fungus-growing ants, the dates of origin of most clades of correspond to the dates of origin of the fungus-growing ants whose gardens they parasitize. We reveal that genome reduction, determined by both genomic sequencing and flow cytometry, is a consistent feature across the genus largely occurring in coding regions, specifically in the form of gene loss and reductions in copy numbers of genes. All functional gene categories have reduced copy numbers, but resistance and virulence genes maintain functional diversity. Biosynthetic gene clusters (BGCs) contribute to phylogenetic differences among spp., and sister taxa in the Hypocreaceae. The phylogenetic patterns of co-diversification among BGCs are similarly exhibited across mass spectrometry analyses of the metabolomes of and their sister taxa. Taken together, our results indicate that spp. evolved unique genomic repertoires to specialize on the fungus-growing ant-microbe symbiosis.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.21624261; 10.6084/m9.figshare.16985137; 10.6084/m9.figshare.16985119; 10.6084/m9.figshare.16985122

References

  1. Mol Biol Evol. 2017 Mar 1;34(3):772-773 [PMID: 28013191]
  2. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  3. Nat Chem Biol. 2015 Sep;11(9):671-7 [PMID: 26284674]
  4. Proc Biol Sci. 2017 Apr 12;284(1852): [PMID: 28404776]
  5. Science. 2003 Jan 17;299(5605):386-8 [PMID: 12532015]
  6. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  7. Nucleic Acids Res. 2017 Jan 4;45(D1):D566-D573 [PMID: 27789705]
  8. Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):10720-10725 [PMID: 30282739]
  9. ISME J. 2016 Feb;10(2):389-99 [PMID: 26172208]
  10. Mycologia. 2006 Nov-Dec;98(6):838-49 [PMID: 17486961]
  11. Appl Environ Microbiol. 2019 Nov 27;85(24): [PMID: 31676475]
  12. Bioinformatics. 2017 Jul 15;33(14):2202-2204 [PMID: 28369201]
  13. Syst Biol. 2018 Sep 1;67(5):901-904 [PMID: 29718447]
  14. Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 [PMID: 12136088]
  15. Science. 1999 Sep 10;285(5434):1742-5 [PMID: 10481011]
  16. Ecol Evol. 2021 May 02;11(11):6041-6052 [PMID: 34141201]
  17. Nucleic Acids Res. 2020 Jan 8;48(D1):D454-D458 [PMID: 31612915]
  18. Proc Biol Sci. 2001 May 22;268(1471):1033-9 [PMID: 11375087]
  19. Nat Commun. 2018 Jun 7;9(1):2208 [PMID: 29880868]
  20. Curr Opin Chem Biol. 2020 Dec;59:147-154 [PMID: 32771972]
  21. Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):15119-24 [PMID: 26598691]
  22. Mol Biol Evol. 2018 Jul 1;35(7):1798-1811 [PMID: 29659989]
  23. Bioinformatics. 2014 May 1;30(9):1236-40 [PMID: 24451626]
  24. BMC Bioinformatics. 2011 Dec 22;12:491 [PMID: 22192575]
  25. Nat Chem Biol. 2020 Jan;16(1):60-68 [PMID: 31768033]
  26. Antonie Van Leeuwenhoek. 2015 Mar;107(3):731-40 [PMID: 25576160]
  27. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7998-8002 [PMID: 10393936]
  28. Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3567-72 [PMID: 26976598]
  29. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  30. Curr Opin Plant Biol. 2000 Aug;3(4):299-304 [PMID: 10873849]
  31. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  32. Database (Oxford). 2012 Oct 22;2012:bas032 [PMID: 23092926]
  33. Mol Biol Evol. 2021 Sep 27;38(10):4647-4654 [PMID: 34320186]
  34. Mycologia. 2004 Sep-Oct;96(5):955-9 [PMID: 21148916]
  35. Mol Phylogenet Evol. 2019 Jan;130:286-296 [PMID: 30393186]
  36. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  37. Proc Natl Acad Sci U S A. 2021 May 11;118(19): [PMID: 33941694]
  38. Nucleic Acids Res. 2017 Feb 28;45(4):e18 [PMID: 28204566]
  39. PLoS One. 2012;7(7):e39597 [PMID: 22815710]
  40. Bioinformatics. 2017 Feb 15;33(4):574-576 [PMID: 27797770]
  41. IEEE Trans Vis Comput Graph. 2014 Dec;20(12):1983-92 [PMID: 26356912]
  42. Bioinformatics. 2011 Nov 1;27(21):2957-63 [PMID: 21903629]
  43. Microbiol Spectr. 2017 Jul;5(4): [PMID: 28820125]
  44. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  45. Trends Ecol Evol. 2016 Apr;31(4):269-280 [PMID: 26858111]
  46. Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9923-8 [PMID: 24958869]
  47. Mol Biol Evol. 2017 Jul 1;34(7):1812-1819 [PMID: 28387841]
  48. Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21495-21503 [PMID: 32796103]
  49. Proc Biol Sci. 1999 Jan 22;266(1415):163-71 [PMID: 10097391]
  50. Am Nat. 2015 May;185(5):693-703 [PMID: 25905511]
  51. Mol Biol Evol. 2016 Jul;33(7):1654-68 [PMID: 27189547]
  52. Nat Commun. 2020 Mar 18;11(1):1432 [PMID: 32188846]
  53. Mol Biol Evol. 1998 Dec;15(12):1647-57 [PMID: 9866200]
  54. Nucleic Acids Res. 2003 Jan 1;31(1):365-70 [PMID: 12520024]
  55. PLoS One. 2015 Jan 24;10(1):e0112067 [PMID: 25617836]
  56. Sci Adv. 2020 Nov 4;6(45): [PMID: 33148650]
  57. Nucleic Acids Res. 2003 Jan 1;31(1):319-21 [PMID: 12520012]
  58. Ann Bot. 2003 Apr;91(5):547-57 [PMID: 12646499]
  59. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  60. Nat Biotechnol. 2016 Aug 9;34(8):828-837 [PMID: 27504778]
  61. Mol Biol Evol. 2020 May 1;37(5):1530-1534 [PMID: 32011700]
  62. Annu Rev Microbiol. 2001;55:357-80 [PMID: 11544360]
  63. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  64. Nat Commun. 2018 Dec 21;9(1):5451 [PMID: 30575731]
  65. Commun Biol. 2018 Aug 16;1:116 [PMID: 30271996]
  66. Nat Commun. 2021 Jan 28;12(1):641 [PMID: 33510166]
  67. Mol Biol Evol. 2018 Feb 1;35(2):518-522 [PMID: 29077904]
  68. Syst Biol. 2016 Nov;65(6):997-1008 [PMID: 27121966]
  69. IMA Fungus. 2021 Aug 24;12(1):23 [PMID: 34429165]
  70. Nat Methods. 2020 Sep;17(9):905-908 [PMID: 32839597]
  71. Bioinformatics. 2009 Aug 1;25(15):1972-3 [PMID: 19505945]
  72. Nat Genet. 2015 Apr;47(4):410-5 [PMID: 25706625]
  73. Nat Chem Biol. 2009 Jun;5(6):391-3 [PMID: 19330011]
  74. IMA Fungus. 2020 Jan 30;11:2 [PMID: 32617254]
  75. Bioinformatics. 2011 Mar 15;27(6):764-70 [PMID: 21217122]
  76. Mol Biol Evol. 1997 Jul;14(7):717-24 [PMID: 9214744]
  77. Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5435-40 [PMID: 18362345]
  78. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  79. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  80. Nucleic Acids Res. 2017 Jul 3;45(W1):W36-W41 [PMID: 28460038]
  81. Genome Biol. 2019 Oct 28;20(1):224 [PMID: 31661016]
  82. Nat Methods. 2017 Jun;14(6):587-589 [PMID: 28481363]
  83. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7 [PMID: 17517783]
  84. Chemistry. 2018 Mar 20;24(17):4445-4452 [PMID: 29356159]
  85. Nucleic Acids Res. 2016 Jan 4;44(D1):D343-50 [PMID: 26527717]
  86. MycoKeys. 2019 Feb 18;(46):97-118 [PMID: 30814906]
  87. PLoS One. 2013 Dec 20;8(12):e82265 [PMID: 24376525]
  88. Mol Biol Evol. 2018 Mar 1;35(3):543-548 [PMID: 29220515]
  89. PeerJ. 2015 Oct 08;3:e1319 [PMID: 26500826]
  90. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):12940-12945 [PMID: 27803316]
  91. BMC Bioinformatics. 2010 Jul 23;11:395 [PMID: 20650010]
  92. Genome Biol. 2006;7 Suppl 1:S11.1-8 [PMID: 16925833]
  93. Syst Biol. 2010 May;59(3):307-21 [PMID: 20525638]
  94. Bioinformatics. 2013 Feb 1;29(3):308-15 [PMID: 23202746]
  95. PLoS Pathog. 2012;8(12):e1003037 [PMID: 23236275]
  96. BMC Bioinformatics. 2004 May 14;5:59 [PMID: 15144565]
  97. Nucleic Acids Res. 2018 Jul 2;46(W1):W95-W101 [PMID: 29771380]

Grants

  1. U19 AI109673/NIAID NIH HHS
  2. U19 AI142720/NIAID NIH HHS
  3. U19 TW009872/FIC NIH HHS

MeSH Term

Animals
Ants
Phylogeny
Parasites
Symbiosis
Hypocreales

Word Cloud

Created with Highcharts 10.0.0fungus-growingdiversityacrossgenomicgenesymbiosisgenusspecializedparasiteantgardensantsdatesorigincopynumbersgenesfunctionalBGCsphylogeneticamongsppsistertaxaFungishapelifeCharacterizingevolutionfungicriticalunderstandingsymbioticassociationskingdomsstudyinvestigatemetabolomicBased25high-qualitydraftgenomesshowformsmonophyleticgrouparisingmycoparasiticfungalancestor6182millionyearsagoMyaAcrossevolutionaryhistorycladescorrespondwhoseparasitizerevealgenomereductiondeterminedsequencingflowcytometryconsistentfeaturelargelyoccurringcodingregionsspecificallyformlossreductionscategoriesreducedresistancevirulencemaintainBiosyntheticclusterscontributedifferencesHypocreaceaepatternsco-diversificationsimilarlyexhibitedmassspectrometryanalysesmetabolomesTakentogetherresultsindicateevolveduniquerepertoiresspecializeant-microbeGenomicdiversificationEscovopsisattineparasitism

Similar Articles

Cited By