Biofilm-forming microorganisms causing hospital-acquired infections from intravenous catheter: A systematic review.

Sandra Pamela Cangui-Panchi, Anahí Lizbeth Ñacato-Toapanta, Leonardo Joshué Enríquez-Martínez, Jorge Reyes, Daniel Garzon-Chavez, António Machado
Author Information
  1. Sandra Pamela Cangui-Panchi: Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales (COCIBA), Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador.
  2. Anahí Lizbeth Ñacato-Toapanta: Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales (COCIBA), Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador.
  3. Leonardo Joshué Enríquez-Martínez: Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales (COCIBA), Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador.
  4. Jorge Reyes: Hospital del Instituto Ecuatoriano de Seguridad Social (IESS) Quito-Sur, Quito, Ecuador.
  5. Daniel Garzon-Chavez: Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Quito, Ecuador.
  6. António Machado: Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales (COCIBA), Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador.

Abstract

The high prevalence of nosocomial infections is related to the use of medical insertion devices such as central venous catheters (CVCs). Most of the microorganisms causing nosocomial infections are biofilm producers, this characteristic allows them to adhere to abiotic surfaces and cause initial catheter infections that can lead to bloodstream infections. Our main goal in this systematic review was to evaluate the prevalence of biofilm among CVC-related infections, particularly among Intensive Care Unit (ICU) patients, in the studies applying different and methodologies. All studies reporting clinical isolates from patients with catheter-related nosocomial infections and biofilm evaluation published up to 24 June 2022 in the PubMed and Scopus databases were included. Twenty-five studies met the eligibility criteria and were included in this systematic review for analysis. Different methodologies were applied in the assessment of biofilm-forming microorganisms including assays, catheter-infected , and mouse models. The present study showed that between 59 and 100% of clinical isolates were able to form biofilms, and the prevalence rate of biofilm formation varied significantly between studies from different countries and regions. Among the clinical isolates collected in our study set, a wide variety of microorganisms including Gram-positive strains, Gram-negative strains, and were found. Many authors studied resistance mechanisms and genes related to biofilm development and surface adherence properties. In some cases, the studies also evaluated biofilm inhibition assays using various kinds of catheter coatings.

Keywords

References

  1. J Chemother. 2001 Nov;13 Spec No 1(1):251-62 [PMID: 11936374]
  2. J Microbiol Immunol Infect. 2021 Oct 13;: [PMID: 34674959]
  3. Front Microbiol. 2018 May 07;9:898 [PMID: 29867809]
  4. Infez Med. 2020 Sep 1;28(3):322-331 [PMID: 32920567]
  5. Nat Protoc. 2016 Mar;11(3):525-41 [PMID: 26890680]
  6. Int J Microbiol. 2021 Feb 22;2021:8869275 [PMID: 33688348]
  7. BMC Infect Dis. 2016 Jul 22;16:346 [PMID: 27449800]
  8. Infect Control Hosp Epidemiol. 2005 Jun;26(6):567-74 [PMID: 16018433]
  9. Can J Infect Dis Med Microbiol. 2018 Aug 26;2018:7624857 [PMID: 30224941]
  10. J Clin Invest. 2005 Mar;115(3):688-94 [PMID: 15696197]
  11. Rev Soc Bras Med Trop. 2018 Sep-Oct;51(5):603-609 [PMID: 30304265]
  12. J Am Soc Nephrol. 2018 Apr;29(4):1336-1343 [PMID: 29472415]
  13. Mem Inst Oswaldo Cruz. 2015 Apr;110(2):242-8 [PMID: 25946249]
  14. ACS Appl Mater Interfaces. 2016 Nov 2;8(43):29298-29309 [PMID: 27709890]
  15. J Clin Microbiol. 2016 Mar;54(3):657-61 [PMID: 26719437]
  16. PLoS One. 2012;7(2):e31092 [PMID: 22319605]
  17. J Chin Med Assoc. 2018 Jan;81(1):7-11 [PMID: 29042186]
  18. J Med Microbiol. 2008 Mar;57(Pt 3):364-372 [PMID: 18287301]
  19. Ann Agric Environ Med. 2021 Sep 16;28(3):361-366 [PMID: 34558254]
  20. Antimicrob Agents Chemother. 2014 Sep;58(9):5291-6 [PMID: 24957841]
  21. Front Microbiol. 2020 Nov 11;11:544480 [PMID: 33262741]
  22. FEMS Microbiol Ecol. 2020 May 1;96(5): [PMID: 32109282]
  23. J Microbiol Methods. 2000 Apr;40(2):175-9 [PMID: 10699673]
  24. Biomed Res Int. 2018 Dec 27;2018:4657396 [PMID: 30687745]
  25. Antimicrob Agents Chemother. 2001 Apr;45(4):999-1007 [PMID: 11257008]
  26. Diagn Microbiol Infect Dis. 2014 Jan;78(1):85-92 [PMID: 24176549]
  27. Pathogens. 2021 Dec 31;11(1): [PMID: 35055990]
  28. PLoS One. 2022 Feb 3;17(2):e0263522 [PMID: 35113972]
  29. BMC Infect Dis. 2019 Jul 29;19(1):672 [PMID: 31357945]
  30. Curr Opin Infect Dis. 2017 Aug;30(4):395-403 [PMID: 28582313]
  31. Microb Pathog. 2021 Mar;152:104613 [PMID: 33227365]
  32. Malawi Med J. 2018 Dec;30(4):243-249 [PMID: 31798802]
  33. Pediatr Infect Dis J. 2018 Nov;37(11):1118-1123 [PMID: 29474260]
  34. Virulence. 2018 Jan 1;9(1):522-554 [PMID: 28362216]
  35. APMIS. 2016 Apr;124(4):319-26 [PMID: 26847412]
  36. Microbiol Res. 2021 Oct;251:126829 [PMID: 34332222]
  37. Infect Control Hosp Epidemiol. 2005 Jun;26(6):515-9 [PMID: 16018425]
  38. Microorganisms. 2022 Jun 06;10(6): [PMID: 35744681]
  39. J Hosp Infect. 2005 Apr;59(4):324-30 [PMID: 15749321]
  40. Curr Top Microbiol Immunol. 2008;322:133-61 [PMID: 18453275]
  41. Antibiotics (Basel). 2021 Jul 08;10(7): [PMID: 34356749]
  42. FEMS Microbiol Rev. 2017 May 1;41(3):276-301 [PMID: 28369412]
  43. Antimicrob Agents Chemother. 2006 May;50(5):1835-40 [PMID: 16641457]
  44. Antibiotics (Basel). 2022 Mar 15;11(3): [PMID: 35326851]
  45. J Clin Med. 2021 Jul 19;10(14): [PMID: 34300345]
  46. Mem Inst Oswaldo Cruz. 2017 Mar;112(3):188-195 [PMID: 28225903]
  47. J Med Microbiol. 2019 Sep;68(9):1306-1313 [PMID: 31274401]
  48. PLoS One. 2020 Jan 24;15(1):e0227772 [PMID: 31978169]
  49. Clin Infect Dis. 2009 Jul 1;49(1):1-45 [PMID: 19489710]
  50. BMC Infect Dis. 2013 May 25;13:242 [PMID: 23705749]
  51. Ann Clin Microbiol Antimicrob. 2014 Jun 04;13:20 [PMID: 24899534]
  52. APMIS. 2012 Aug;120(8):605-11 [PMID: 22779682]
  53. Ann Clin Microbiol Antimicrob. 2016 May 31;15(1):36 [PMID: 27245756]
  54. Antimicrob Agents Chemother. 2018 Jul 27;62(8): [PMID: 29866870]
  55. Genome Biol. 2012 Jul 25;13(7):R64 [PMID: 22830599]
  56. J Infect Public Health. 2020 May;13(5):791-799 [PMID: 31813834]
  57. Heliyon. 2018 Dec 28;4(12):e01067 [PMID: 30619958]
  58. J Biol Chem. 2020 Apr 3;295(14):4411-4427 [PMID: 32102851]
  59. ACS Appl Bio Mater. 2021 Dec 20;4(12):8248-8258 [PMID: 35005941]
  60. Front Cell Infect Microbiol. 2022 Jan 05;11:795797 [PMID: 35071046]
  61. Front Microbiol. 2016 Sep 21;7:1429 [PMID: 27708625]
  62. Front Cell Infect Microbiol. 2022 Aug 18;12:953168 [PMID: 36061861]
  63. Sci Rep. 2019 Apr 24;9(1):6483 [PMID: 31019274]
  64. Antonie Van Leeuwenhoek. 2019 Sep;112(9):1331-1340 [PMID: 31055716]
  65. ACS Appl Mater Interfaces. 2017 Oct 18;9(41):36269-36280 [PMID: 28945343]
  66. Balkan Med J. 2020 Apr 09;37(4):215-221 [PMID: 32270947]
  67. Int J Environ Res Public Health. 2020 Aug 28;17(17): [PMID: 32872324]
  68. J Mol Biol. 2019 Jul 26;431(16):3015-3027 [PMID: 30954574]
  69. J Microbiol Methods. 2011 Feb;84(2):167-73 [PMID: 21081140]
  70. Infect Drug Resist. 2021 Mar 23;14:1155-1168 [PMID: 33790586]
  71. Pathog Dis. 2014 Nov;72(2):87-94 [PMID: 24842562]
  72. Int J Med Microbiol. 2019 Jan;309(1):1-12 [PMID: 30503373]
  73. Front Cell Infect Microbiol. 2022 Jul 08;12:930624 [PMID: 35899044]
  74. Trends Biotechnol. 2016 Dec;34(12):945-948 [PMID: 27344424]
  75. Microbiology (Reading). 2020 Oct;166(10):995-1003 [PMID: 32749953]
  76. Indian J Pathol Microbiol. 2011 Jan-Mar;54(1):85-9 [PMID: 21393884]

Word Cloud

Created with Highcharts 10.0.0infectionsbiofilmstudiesmicroorganismsassaysprevalencenosocomialcathetersystematicreviewIntensiveCareUnitclinicalisolatesrelatedCVCscausingamongICUpatientsdifferentmethodologiesincludedanalysisincludingstudyformationstrainsintravenousmicroscopyCentralacidStaphylococcusaureushighusemedicalinsertiondevicescentralvenouscathetersproducerscharacteristicallowsadhereabioticsurfacescauseinitialcanleadbloodstreammaingoalevaluateCVC-relatedparticularlyapplyingreportingcatheter-relatedevaluationpublished24June2022PubMedScopusdatabasesTwenty-fivemeteligibilitycriteriaDifferentappliedassessmentbiofilm-formingcatheter-infectedmousemodelspresentshowed59100%ableformbiofilmsratevariedsignificantlycountriesregionsAmongcollectedsetwidevarietyGram-positiveGram-negativefoundManyauthorsstudiedresistancemechanismsgenesdevelopmentsurfaceadherencepropertiescasesalsoevaluatedinhibitionusingvariouskindscoatingsBiofilm-forminghospital-acquiredcatheter:BFIBiofilmindexBiofilmsCFUColony-formingunitCHX-M/RChlorhexidineminocyclinerifampinCLSMConfocallaserscanningCVCrystalvioletVenousCathetersCoNSCoagulase-negativestaphylococciEDTAEthylenediaminetetraaceticHGTHorizontalgenetransfervitrovivoMDRMultidrug-resistantMDSMultidrug-susceptibleMRSAMethicillin-resistantMSSAMeticillin-sensitiveNICUNeonatalNosocomialPDMSPolydimethylsiloxanePGAPoly-γ-DL-glutamicPRISMAPreferredReportingItemsSystematicReviewsMeta-AnalysesQBAQuantitativeQDQualitativedetectionSEMScanningelectronXDRExtensivelydrug-resistantoPDM-plus-PSNN′-12-phenylenedimaleimideplusprotaminesulfate

Similar Articles

Cited By (32)