Occurrence, ecological risk assessment and source apportionment of pharmaceuticals, steroid hormones and xenoestrogens in the Ghanaian aquatic environments.

Joseph K Adjei, Alberta D Dayie, Justice K Addo, Anita Asamoah, Ernest O Amoako, Benedicta Y Egoh, Ebenezer Bekoe, Nathaniel O Ofori, George A Adjei, David K Essumang
Author Information
  1. Joseph K Adjei: Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana.
  2. Alberta D Dayie: Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana.
  3. Justice K Addo: Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana.
  4. Anita Asamoah: Environmental Resources Centre, Ghana Atomic Energy Commission, Ghana.
  5. Ernest O Amoako: Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana.
  6. Benedicta Y Egoh: Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana.
  7. Ebenezer Bekoe: Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana.
  8. Nathaniel O Ofori: Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana.
  9. George A Adjei: Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana.
  10. David K Essumang: Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana.

Abstract

Elevated levels of pharmaceuticals, steroid hormones and xenoestrogens (PSHXEs) in the aquatic environment pose a serious threat to the ecological balance. The endocrine disrupting PSHXEs in aquatic systems are linked to several adverse effects like reproductive health impairment, feminization, high mortality rate, decreased biodiversity etc. This study, therefore, sought to investigate the occurrence and the ecological risks posed by some selected PSHXEs and also conduct source apportionment of the PSHXEs in the Ghanaian aquatic environments. A total of 48 samples comprising 24 sediments and water each were taken from six waterbodies in Ghana. The samples were extracted using SPE cartridges for water and QuEChERS-dSPE for sediments. The analyses were done using Shimadzu Prominence UFLC 20A series. Ecological risk assessments were also conducted with the aid of USEPA T.E.S.T., whereas source apportionments were conducted using the APCS-MLR receptor model. Elevated mean total levels of PSHXEs ranging between 12,187 and 52,117 ng/L and 2,022-6,047 ng/g for water and sediment samples respectively were found. The risk quotients (RQ > 1) suggested a high risk posed by PSHXEs in water to organisms at the three trophic levels and also to benthic organisms in sediments of the Ghanaian aquatic environments for a short-term period. The APCS-MLR receptor model suggested three statistically significant sources (p < 0.05) designated by signature PSHXEs as domestic (major), mix hospital and industrial and agricultural waste sources. The source apportionment suggested increased use of steroid estrogens and anabolic drugs among the Ghana populace.

Keywords

References

  1. Sci Total Environ. 2017 Dec 31;609:1423-1432 [PMID: 28800685]
  2. Environ Toxicol Chem. 2002 Dec;21(12):2526-35 [PMID: 12463545]
  3. Animals (Basel). 2021 Jul 20;11(7): [PMID: 34359280]
  4. J Chromatogr A. 2006 May 26;1116(1-2):51-6 [PMID: 16574130]
  5. Ecotoxicol Environ Saf. 2019 Mar;169:822-828 [PMID: 30597781]
  6. Ecotoxicol Environ Saf. 2021 Apr 15;213:112044 [PMID: 33601171]
  7. J Antibiot (Tokyo). 2021 Jun;74(6):417-420 [PMID: 33742170]
  8. Chemosphere. 2017 Feb;168:1042-1050 [PMID: 27814951]
  9. Sci Total Environ. 2021 Nov 25;797:149008 [PMID: 34303974]
  10. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2017 Jun 7;52(7):686-696 [PMID: 28448746]
  11. Sci Total Environ. 2014 Jan 1;466-467:939-51 [PMID: 23978587]
  12. Sci Total Environ. 2017 Apr 15;584-585:1100-1107 [PMID: 28185731]
  13. Rev Environ Health. 2019 Mar 26;34(1):69-79 [PMID: 30854834]
  14. Environ Sci Pollut Res Int. 2018 Dec;25(36):36712-36723 [PMID: 30377972]
  15. J Neurosci. 2009 Oct 7;29(40):12484-96 [PMID: 19812324]
  16. Sci Total Environ. 2015 Dec 15;538:750-67 [PMID: 26327643]
  17. Front Endocrinol (Lausanne). 2020 Mar 25;11:115 [PMID: 32269550]
  18. Sci Total Environ. 2014 Feb 1;470-471:1509-16 [PMID: 24016722]
  19. Antibiotics (Basel). 2021 Feb 10;10(2): [PMID: 33578692]
  20. Aquat Toxicol. 2011 Aug;104(3-4):278-90 [PMID: 21641296]
  21. Philos Trans R Soc Lond B Biol Sci. 2014 Nov 19;369(1656): [PMID: 25405959]
  22. Int J Mol Sci. 2016 Dec 13;17(12): [PMID: 27983596]
  23. Chemosphere. 2015 Apr;125:155-67 [PMID: 25563167]
  24. Arch Environ Contam Toxicol. 2006 Oct;51(3):445-51 [PMID: 16823521]
  25. Arch Environ Contam Toxicol. 2018 Aug;75(2):213-223 [PMID: 29230530]
  26. Environ Pollut. 2019 May;248:368-379 [PMID: 30818116]
  27. Mikrochim Acta. 2019 Jun 11;186(7):428 [PMID: 31187284]
  28. JAMA. 2010 Apr 14;303(14):1401-9 [PMID: 20388896]
  29. Environ Pollut. 2019 Jul;250:1010-1018 [PMID: 31085467]
  30. Environ Sci Pollut Res Int. 2017 Jun;24(18):15838-15851 [PMID: 28534270]
  31. Sci Total Environ. 2021 Oct 20;792:148306 [PMID: 34157532]
  32. Environ Res. 2018 Feb;161:195-201 [PMID: 29156342]
  33. Sci Total Environ. 2016 Apr 1;548-549:148-154 [PMID: 26802343]
  34. Environ Pollut. 2021 Feb 15;271:116353 [PMID: 33385890]
  35. J Hazard Mater. 2018 Jul 15;354:81-90 [PMID: 29729602]
  36. Toxicol Rep. 2021 Jul 31;8:1538-1557 [PMID: 34430217]
  37. Environ Pollut. 2013 Sep;180:368-71 [PMID: 23726145]
  38. Horm Behav. 2017 Feb;88:15-24 [PMID: 27760301]
  39. Mol Biol Rep. 2017 Feb;44(1):35-50 [PMID: 27783191]
  40. Environ Sci Technol. 2009 Oct 15;43(20):7691-8 [PMID: 19921880]
  41. Environ Toxicol Pharmacol. 2017 Jun;52:69-76 [PMID: 28384514]
  42. Environ Sci Technol. 2012 May 1;46(9):5183-92 [PMID: 22475373]
  43. Rev Environ Contam Toxicol. 2017;239:1-77 [PMID: 26684744]
  44. Dev Comp Immunol. 2018 Dec;89:102-110 [PMID: 30092317]
  45. Physiol Behav. 2020 Jun 1;220:112883 [PMID: 32199998]
  46. Eur J Endocrinol. 2018 Dec 1;179(6):R275-R286 [PMID: 30400018]
  47. Front Behav Neurosci. 2017 Apr 20;11:69 [PMID: 28473760]
  48. J Neuroendocrinol. 2016 Jul;28(7): [PMID: 27306650]
  49. Toxicol Rep. 2019 Nov 18;6:1263-1272 [PMID: 31788437]
  50. J Environ Manage. 2021 Jan 1;277:111485 [PMID: 33049614]
  51. Environ Int. 2020 Mar;136:105454 [PMID: 32032889]
  52. Sci Total Environ. 2014 Mar 1;473-474:619-41 [PMID: 24394371]
  53. Environ Health. 2012 Jun 28;11 Suppl 1:S8 [PMID: 22759508]
  54. Compr Physiol. 2016 Jun 13;6(3):1135-60 [PMID: 27347888]
  55. Rev Environ Contam Toxicol. 2016;238:91-105 [PMID: 26572767]
  56. Environ Monit Assess. 2012 Jan;184(2):1197-205 [PMID: 21472385]
  57. Ecotoxicol Environ Saf. 2008 Nov;71(3):757-64 [PMID: 18395257]
  58. Environ Sci Pollut Res Int. 2014 Sep;21(18):10970-82 [PMID: 24870285]
  59. Toxicol Sci. 2007 Apr;96(2):335-45 [PMID: 17218470]
  60. Sci Total Environ. 2019 Jan 1;646:1459-1467 [PMID: 30235631]
  61. Environ Pollut. 2011 Oct;159(10):2929-34 [PMID: 21570166]
  62. J Chromatogr A. 2008 Jun 27;1195(1-2):44-51 [PMID: 18502434]
  63. Integr Environ Assess Manag. 2015 Oct;11(4):674-88 [PMID: 25779725]
  64. Cell Cycle. 2007 Aug 15;6(16):2010-8 [PMID: 17700064]
  65. Sci Total Environ. 2020 Dec 1;746:141165 [PMID: 32771758]
  66. Int J Endocrinol. 2013;2013:650984 [PMID: 23710176]
  67. Chem Rev. 2019 Mar 27;119(6):3510-3673 [PMID: 30830758]
  68. Expert Rev Endocrinol Metab. 2011 May;6(3):437-451 [PMID: 21765856]
  69. Toxicol Appl Pharmacol. 2016 Apr 15;297:32-40 [PMID: 26944108]
  70. Environ Pollut. 2013 Feb;173:133-7 [PMID: 23202643]
  71. Br J Cancer. 2020 Jul;123(2):316-324 [PMID: 32376888]
  72. Chemosphere. 2021 Sep;279:130381 [PMID: 33878699]
  73. Environ Sci Technol. 2002 Mar 15;36(6):1202-11 [PMID: 11944670]
  74. Chemosphere. 2011 Jan;82(2):179-86 [PMID: 21040946]
  75. Chemosphere. 2012 Apr;87(5):513-20 [PMID: 22230726]
  76. Sci Total Environ. 2009 Jan 1;407(2):731-48 [PMID: 18992918]
  77. Ecotoxicol Environ Saf. 2017 Jun;140:222-229 [PMID: 28267651]
  78. Bull Environ Contam Toxicol. 2020 Dec;105(6):882-891 [PMID: 33175186]
  79. Environ Sci Technol. 2015 May 19;49(10):6319-26 [PMID: 25902010]
  80. Environ Sci Technol. 2012 Oct 16;46(20):11047-53 [PMID: 22967238]
  81. Environ Geochem Health. 2020 Nov;42(11):3795-3810 [PMID: 32594417]
  82. Front Public Health. 2018 May 23;6:141 [PMID: 29876339]
  83. Sci Total Environ. 2017 Jul 1;589:46-55 [PMID: 28264771]
  84. Chemosphere. 2019 Apr;220:783-792 [PMID: 30611077]
  85. Food Chem Toxicol. 2018 Jan;111:125-132 [PMID: 29128613]
  86. Trends Cogn Sci. 2017 Feb;21(2):125-136 [PMID: 28089524]
  87. Environ Sci Pollut Res Int. 2019 Feb;26(6):6107-6115 [PMID: 30617890]
  88. Molecules. 2020 Feb 25;25(5): [PMID: 32106570]
  89. Sci Total Environ. 2019 Apr 1;659:230-239 [PMID: 30599342]
  90. J Natl Cancer Inst. 2016 May 18;108(10): [PMID: 27193440]
  91. Sci Total Environ. 2016 May 1;551-552:605-13 [PMID: 26897403]
  92. Environ Sci Technol. 2012 Apr 17;46(8):4259-60 [PMID: 22462768]
  93. Environ Int. 2020 Nov;144:106004 [PMID: 32745782]
  94. Evol Appl. 2013 Dec;6(8):1160-70 [PMID: 24478798]
  95. Curr Pharm Des. 2016;22(10):1334-49 [PMID: 26972291]
  96. Int J Med Sci. 2015 Oct 30;12(12):926-36 [PMID: 26664253]
  97. Chemosphere. 2016 May;150:596-604 [PMID: 26899854]
  98. Environ Sci Technol. 2012 Feb 7;46(3):1352-60 [PMID: 22242694]
  99. PLoS One. 2015 Sep 17;10(9):e0138438 [PMID: 26379041]
  100. J Nat Sci Biol Med. 2011 Jul;2(2):139-40 [PMID: 22346224]
  101. Waste Manag. 2016 Sep;55:257-64 [PMID: 27026494]
  102. J Environ Monit. 2011 Apr;13(4):871-8 [PMID: 21424011]
  103. Water Res. 2015 Apr 1;72:28-39 [PMID: 25466637]
  104. Gen Comp Endocrinol. 2015 Apr 1;214:195-219 [PMID: 25277515]
  105. Environ Res. 2015 Oct;142:281-7 [PMID: 26186136]
  106. Environ Res. 2015 Apr;138:326-44 [PMID: 25766939]
  107. Environ Sci Technol. 2014 Jun 3;48(11):6366-73 [PMID: 24802743]
  108. Environ Int. 2017 Feb;99:107-119 [PMID: 28040262]

Word Cloud

Created with Highcharts 10.0.0PSHXEsaquaticrisksourcewaterlevelssteroidecologicalalsoapportionmentGhanaianenvironmentssamplessedimentsusingAPCS-MLRreceptormodelsuggestedElevatedpharmaceuticalshormonesxenoestrogensenvironmenthighposedtotalGhanaEcologicalconductedTquotientsorganismsthreesourcesposeseriousthreatbalanceendocrinedisruptingsystemslinkedseveraladverseeffectslikereproductivehealthimpairmentfeminizationmortalityratedecreasedbiodiversityetcstudythereforesoughtinvestigateoccurrencerisksselectedconduct48comprising24takensixwaterbodiesextractedSPEcartridgesQuEChERS-dSPEanalysesdoneShimadzuProminenceUFLC20AseriesassessmentsaidUSEPAESwhereasapportionmentsmeanranging1218752117 ng/L2022-6047 ng/gsedimentrespectivelyfoundRQ>1trophicbenthicshort-termperiodstatisticallysignificantp < 005designatedsignaturedomesticmajormixhospitalindustrialagriculturalwasteincreaseduseestrogensanabolicdrugsamongpopulaceOccurrenceassessmentAquaticBisphenolEndocrinedisruptorsXenoestrogens

Similar Articles

Cited By (1)