Single-cell transcriptomic profiling reveals specific maturation signatures in human cardiomyocytes derived from -inactivated induced pluripotent stem cells.

Jie Wang, William Morgan, Ankur Saini, Tao Liu, John Lough, Lu Han
Author Information
  1. Jie Wang: Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.
  2. William Morgan: Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.
  3. Ankur Saini: Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.
  4. Tao Liu: Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.
  5. John Lough: Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.
  6. Lu Han: Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.

Abstract

Mammalian cardiomyocyte maturation entails phenotypic and functional optimization during the late fetal and postnatal phases of heart development, both processes driven and coordinated by complex gene regulatory networks. Cardiomyocytes derived from human induced pluripotent stem cells (iPSCs) are heterogenous and immature, barely resembling their adult counterparts. To characterize relevant developmental programs and maturation states during human iPSC-cardiomyocyte differentiation, we performed single-cell transcriptomic sequencing, which revealed six cardiomyocyte subpopulations, whose heterogeneity was defined by cell cycle and maturation states. Two of those subpopulations were characterized by a mature, non-proliferative transcriptional profile. To further investigate the proliferation-maturation transition in cardiomyocytes, we induced loss-of-function of , which represses cell cycle progression in primary cardiomyocytes . This resulted in increased maturation in -inactivated cardiomyocytes, characterized by transcriptional profiles related to myofibril structure and energy metabolism. Furthermore, we identified maturation signatures and maturational trajectories unique for control and -inactivated cardiomyocytes. By comparing these datasets with single-cell transcriptomes of human fetal hearts, we were able to define spatiotemporal maturation states in human iPSC-cardiomyocytes. Our results provide an integrated approach for comparing -differentiated cardiomyocytes with their counterparts and suggest a strategy to promote cardiomyocyte maturation.

Keywords

References

  1. Cell. 2019 Dec 12;179(7):1647-1660.e19 [PMID: 31835037]
  2. J Clin Invest. 2012 Mar;122(3):1119-30 [PMID: 22354168]
  3. Dev Cell. 2020 Apr 6;53(1):42-59.e11 [PMID: 32109383]
  4. Dev Cell. 2016 Nov 21;39(4):491-507 [PMID: 27840109]
  5. Science. 2009 Apr 3;324(5923):98-102 [PMID: 19342590]
  6. Dev Cell. 2016 Nov 21;39(4):480-490 [PMID: 27840107]
  7. Curr Protoc. 2021 Mar;1(3):e90 [PMID: 33780170]
  8. Nature. 2020 Dec;588(7838):466-472 [PMID: 32971526]
  9. Nature. 1998 Aug 6;394(6693):545-51 [PMID: 9707115]
  10. Science. 2019 Apr 12;364(6436):184-188 [PMID: 30846611]
  11. Nat Protoc. 2013 Nov;8(11):2281-2308 [PMID: 24157548]
  12. Oncogene. 2006 Jun 8;25(24):3397-407 [PMID: 16434966]
  13. Nature. 2013 Jan 17;493(7432):433-6 [PMID: 23222518]
  14. Science. 2017 Jun 9;356(6342):1035-1039 [PMID: 28596337]
  15. Nat Commun. 2018 Nov 21;9(1):4906 [PMID: 30464173]
  16. Cardiovasc Res. 2015 May 1;106(2):261-71 [PMID: 25770146]
  17. Mol Biol Cell. 2011 Dec;22(23):4683-93 [PMID: 21976703]
  18. Cell Stem Cell. 2013 Jan 3;12(1):127-37 [PMID: 23168164]
  19. Nature. 2018 Aug;560(7719):494-498 [PMID: 30089906]
  20. Nat Biotechnol. 2020 Dec;38(12):1408-1414 [PMID: 32747759]
  21. Development. 2015 Sep 15;142(18):3231-8 [PMID: 26209647]
  22. Commun Biol. 2021 Mar 19;4(1):355 [PMID: 33742095]
  23. Nat Commun. 2021 May 26;12(1):3155 [PMID: 34039977]
  24. Science. 2006 Mar 31;311(5769):1887-93 [PMID: 16543417]
  25. Cell Stem Cell. 2018 Oct 4;23(4):586-598.e8 [PMID: 30290179]
  26. Circ Res. 2012 May 25;110(11):1513-24 [PMID: 22628575]
  27. Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1446-51 [PMID: 23302686]
  28. Nat Commun. 2017 Apr 20;8:15098 [PMID: 28425486]
  29. J Am Coll Cardiol. 2010 Oct 26;56(18):1493-502 [PMID: 20951326]
  30. Stem Cells Dev. 2019 May 15;28(10):659-673 [PMID: 30892143]
  31. Nature. 2011 May 19;473(7347):326-35 [PMID: 21593865]
  32. Mech Dev. 2002 Jan;110(1-2):139-49 [PMID: 11744375]
  33. Nat Rev Drug Discov. 2017 Feb;16(2):115-130 [PMID: 27980341]
  34. PLoS One. 2012;7(7):e40288 [PMID: 22815737]
  35. Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):E7871-E7880 [PMID: 30061404]
  36. Nat Biotechnol. 2018 Dec 03;: [PMID: 30531897]
  37. Nature. 2018 Apr;556(7700):239-243 [PMID: 29618819]
  38. Circulation. 2018 Jul 10;138(2):166-180 [PMID: 29386203]
  39. Sci Rep. 2021 Aug 4;11(1):15845 [PMID: 34349150]
  40. Front Cell Dev Biol. 2017 May 05;5:50 [PMID: 28529939]
  41. Nat Cell Biol. 2020 Jan;22(1):108-119 [PMID: 31915373]
  42. Am J Physiol. 1996 Nov;271(5 Pt 2):H2183-9 [PMID: 8945939]
  43. Development. 2019 Jun 14;146(12): [PMID: 31142541]
  44. Cell Rep. 2019 Feb 12;26(7):1934-1950.e5 [PMID: 30759401]
  45. Nat Cell Biol. 2015 May;17(5):627-38 [PMID: 25848746]
  46. Genome Res. 2018 Jul;28(7):1053-1066 [PMID: 29752298]
  47. Cardiovasc Res. 2020 Jul 1;116(8):1458-1472 [PMID: 31688894]
  48. Dev Cell. 2022 Oct 24;57(20):2397-2411.e9 [PMID: 36283391]
  49. Cell. 2008 Feb 22;132(4):661-80 [PMID: 18295582]
  50. Science. 2011 Dec 23;334(6063):1706-10 [PMID: 22116031]
  51. FASEB J. 2012 Jan;26(1):397-408 [PMID: 21974928]
  52. Cell Stem Cell. 2022 Apr 7;29(4):559-576.e7 [PMID: 35325615]
  53. Cell Stem Cell. 2021 Dec 2;28(12):2137-2152.e6 [PMID: 34861147]
  54. Stem Cells Dev. 2013 Jul 15;22(14):1991-2002 [PMID: 23461462]
  55. Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):E1848-57 [PMID: 22645348]
  56. Nature. 2014 Jun 12;510(7504):273-7 [PMID: 24776797]
  57. Cardiovasc Res. 2014 Nov 1;104(2):258-69 [PMID: 25209314]
  58. Nature. 2019 Aug;572(7767):120-124 [PMID: 31341279]

Word Cloud

Created with Highcharts 10.0.0maturationhumancardiomyocytescardiomyocytefetalinducedstatessingle-cell-inactivatedheartderivedpluripotentstemcellsiPSCscounterpartstranscriptomicsubpopulationscellcyclecharacterizedtranscriptionalsignaturescomparingMammalianentailsphenotypicfunctionaloptimizationlatepostnatalphasesdevelopmentprocessesdrivencoordinatedcomplexgeneregulatorynetworksCardiomyocytesheterogenousimmaturebarelyresemblingadultcharacterizerelevantdevelopmentalprogramsiPSC-cardiomyocytedifferentiationperformedsequencingrevealedsixwhoseheterogeneitydefinedTwomaturenon-proliferativeprofileinvestigateproliferation-maturationtransitionloss-of-functionrepressesprogressionprimaryresultedincreasedprofilesrelatedmyofibrilstructureenergymetabolismFurthermoreidentifiedmaturationaltrajectoriesuniquecontroldatasetstranscriptomesheartsabledefinespatiotemporaliPSC-cardiomyocytesresultsprovideintegratedapproach-differentiatedsuggeststrategypromoteSingle-cellprofilingrevealsspecificLmnb2laminB2proliferationRNA-seq

Similar Articles

Cited By (2)