Neural manifold analysis of brain circuit dynamics in health and disease.

Rufus Mitchell-Heggs, Seigfred Prado, Giuseppe P Gava, Mary Ann Go, Simon R Schultz
Author Information
  1. Rufus Mitchell-Heggs: Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, SW7 2AZ, United Kingdom.
  2. Seigfred Prado: Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, SW7 2AZ, United Kingdom.
  3. Giuseppe P Gava: Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, SW7 2AZ, United Kingdom.
  4. Mary Ann Go: Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, SW7 2AZ, United Kingdom.
  5. Simon R Schultz: Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, SW7 2AZ, United Kingdom. s.schultz@imperial.ac.uk.

Abstract

Recent developments in experimental neuroscience make it possible to simultaneously record the activity of thousands of neurons. However, the development of analysis approaches for such large-scale neural recordings have been slower than those applicable to single-cell experiments. One approach that has gained recent popularity is neural manifold learning. This approach takes advantage of the fact that often, even though neural datasets may be very high dimensional, the dynamics of neural activity tends to traverse a much lower-dimensional space. The topological structures formed by these low-dimensional neural subspaces are referred to as "neural manifolds", and may potentially provide insight linking neural circuit dynamics with cognitive function and behavioral performance. In this paper we review a number of linear and non-linear approaches to neural manifold learning, including principal component analysis (PCA), multi-dimensional scaling (MDS), Isomap, locally linear embedding (LLE), Laplacian eigenmaps (LEM), t-SNE, and uniform manifold approximation and projection (UMAP). We outline these methods under a common mathematical nomenclature, and compare their advantages and disadvantages with respect to their use for neural data analysis. We apply them to a number of datasets from published literature, comparing the manifolds that result from their application to hippocampal place cells, motor cortical neurons during a reaching task, and prefrontal cortical neurons during a multi-behavior task. We find that in many circumstances linear algorithms produce similar results to non-linear methods, although in particular cases where the behavioral complexity is greater, non-linear methods tend to find lower-dimensional manifolds, at the possible expense of interpretability. We demonstrate that these methods are applicable to the study of neurological disorders through simulation of a mouse model of Alzheimer's Disease, and speculate that neural manifold analysis may help us to understand the circuit-level consequences of molecular and cellular neuropathology.

Keywords

References

  1. Nature. 2019 Jul;571(7765):361-365 [PMID: 31243367]
  2. Neuron. 2020 Aug 19;107(4):745-758.e6 [PMID: 32516573]
  3. Science. 2000 Dec 22;290(5500):2319-23 [PMID: 11125149]
  4. PLoS Comput Biol. 2021 Feb 5;17(2):e1008621 [PMID: 33544700]
  5. Neural Netw. 2008 Mar-Apr;21(2-3):160-9 [PMID: 18255262]
  6. J Neurophysiol. 2007 Jun;97(6):4235-57 [PMID: 17376854]
  7. Curr Opin Neurobiol. 2021 Oct;70:113-120 [PMID: 34537579]
  8. Neuron. 2022 Oct 5;110(19):3064-3075 [PMID: 35863344]
  9. Nat Neurosci. 2020 Feb;23(2):260-270 [PMID: 31907438]
  10. Neuron. 2006 Aug 17;51(4):467-82 [PMID: 16908412]
  11. Bioessays. 2015 Jun;37(6):624-32 [PMID: 25773221]
  12. Vision Res. 1983;23(8):775-85 [PMID: 6623937]
  13. Nat Rev Neurosci. 2000 Nov;1(2):125-32 [PMID: 11252775]
  14. Eur J Neurosci. 2006 Jun;23(11):2829-46 [PMID: 16819972]
  15. Nat Neurosci. 2019 Sep;22(9):1512-1520 [PMID: 31406365]
  16. Science. 1995 Jun 2;268(5215):1353-8 [PMID: 7761855]
  17. Nat Rev Neurosci. 2002 Nov;3(11):884-95 [PMID: 12415296]
  18. Cortex. 2011 Oct;47(9):1107-15 [PMID: 21683947]
  19. Elife. 2016 Apr 12;5: [PMID: 27067378]
  20. Nature. 2023 May;617(7960):360-368 [PMID: 37138088]
  21. Nature. 2022 Feb;602(7895):123-128 [PMID: 35022611]
  22. Elife. 2015 Jun 23;4:e07436 [PMID: 26099302]
  23. Neuron. 2017 Jun 7;94(5):978-984 [PMID: 28595054]
  24. J Neurophysiol. 2007 May;97(5):3763-80 [PMID: 17329627]
  25. J Neurophysiol. 2009 Jul;102(1):614-35 [PMID: 19357332]
  26. Anal Chem. 2008 Jul 1;80(13):4933-44 [PMID: 18537272]
  27. Neuron. 2009 May 14;62(3):413-25 [PMID: 19447096]
  28. J Neurosci. 1998 May 15;18(10):3870-96 [PMID: 9570816]
  29. Nature. 2012 Mar 14;484(7392):62-8 [PMID: 22419153]
  30. Science. 2008 Sep 19;321(5896):1686-9 [PMID: 18802001]
  31. PLoS Comput Biol. 2021 Nov 29;17(11):e1008591 [PMID: 34843461]
  32. Nat Neurosci. 2011 Jun 27;14(7):811-9 [PMID: 21709677]
  33. Cell. 2019 Jul 11;178(2):429-446.e16 [PMID: 31230711]
  34. Neuron. 2018 Feb 21;97(4):953-966.e8 [PMID: 29398358]
  35. Nat Neurosci. 2014 Dec;17(12):1784-1792 [PMID: 25383902]
  36. Restor Neurol Neurosci. 2007;25(3-4):195-210 [PMID: 17942999]
  37. Neural Comput. 2019 Jul;31(7):1356-1379 [PMID: 31113304]
  38. Neuron. 2005 Nov 23;48(4):661-73 [PMID: 16301181]
  39. Adv Neural Inf Process Syst. 2018 Dec;31:6690-6699 [PMID: 31274967]
  40. J Neurophysiol. 2009 Aug;102(2):1315-30 [PMID: 19297518]
  41. Curr Opin Neurobiol. 2021 Oct;70:137-144 [PMID: 34801787]
  42. J Neurosci. 2007 Oct 3;27(40):10742-50 [PMID: 17913908]
  43. Front Comput Neurosci. 2018 Nov 26;12:93 [PMID: 30534065]
  44. Elife. 2021 Aug 06;10: [PMID: 34355695]
  45. J Neurosci. 2010 Jan 6;30(1):350-60 [PMID: 20053916]
  46. Nature. 2014 Jun 12;510(7504):263-7 [PMID: 24805237]
  47. Neuron. 2016 Apr 6;90(1):128-42 [PMID: 26971945]
  48. Nat Methods. 2018 Oct;15(10):805-815 [PMID: 30224673]
  49. Nature. 2013 Nov 7;503(7474):78-84 [PMID: 24201281]
  50. J Neurosci. 2010 Nov 10;30(45):15241-53 [PMID: 21068329]
  51. Neural Comput. 2018 Jul;30(7):1750-1774 [PMID: 29894653]
  52. PLoS Biol. 2021 May 3;19(5):e3001235 [PMID: 33939689]
  53. Curr Opin Neurobiol. 2016 Apr;37:66-74 [PMID: 26851755]
  54. Nat Commun. 2016 Oct 27;7:13239 [PMID: 27807345]
  55. Cell. 2021 May 13;184(10):2767-2778.e15 [PMID: 33857423]
  56. Neuron. 2013 Apr 24;78(2):364-75 [PMID: 23562541]
  57. Neuron. 2017 Dec 6;96(5):1178-1191.e4 [PMID: 29154129]
  58. Nat Rev Neurosci. 2016 Dec;17(12):777-792 [PMID: 27829687]
  59. Sci Rep. 2018 Apr 3;8(1):5433 [PMID: 29615797]
  60. Nature. 2012 Jul 5;487(7405):51-6 [PMID: 22722855]
  61. J Neurosci. 2006 Oct 4;26(40):10129-40 [PMID: 17021169]
  62. Multivariate Behav Res. 2019 Mar-Apr;54(2):173-191 [PMID: 30569740]
  63. Sci Rep. 2020 Mar 27;10(1):5559 [PMID: 32221342]
  64. J Neurophysiol. 1997 Nov;78(5):2336-50 [PMID: 9356386]
  65. Nature. 2012 May 09;485(7399):471-7 [PMID: 22622571]
  66. Nature. 2013 May 30;497(7451):585-90 [PMID: 23685452]
  67. Behav Neurosci. 2006 Dec;120(6):1337-45 [PMID: 17201479]
  68. Nat Neurosci. 2015 Jul;18(7):1025-33 [PMID: 26075643]
  69. Front Neuroinform. 2016 Mar 15;10:9 [PMID: 27014049]
  70. Front Cell Neurosci. 2021 Feb 12;15:618658 [PMID: 33642996]
  71. Biol Lett. 2011 Feb 23;7(1):63-6 [PMID: 20810431]
  72. Nature. 2021 Jul;595(7865):80-84 [PMID: 34135512]
  73. PLoS Comput Biol. 2023 Aug 17;19(8):e1011288 [PMID: 37590228]
  74. Annu Rev Neurosci. 2020 Jul 8;43:249-275 [PMID: 32640928]
  75. J Neurol Neurosurg Psychiatry. 1957 Feb;20(1):11-21 [PMID: 13406589]
  76. Adv Neural Inf Process Syst. 2017 Dec;30:3496-3505 [PMID: 31244512]
  77. Nat Neurosci. 2005 Nov;8(11):1568-76 [PMID: 16222230]
  78. Neuron. 2010 Feb 25;65(4):472-9 [PMID: 20188652]
  79. Science. 2018 Nov 2;362(6414):584-589 [PMID: 30385578]
  80. Nat Neurosci. 2014 Nov;17(11):1500-9 [PMID: 25151264]
  81. Nature. 2013 Mar 21;495(7441):327-32 [PMID: 23426266]
  82. Curr Opin Neurobiol. 2015 Jun;32:148-55 [PMID: 25932978]
  83. Science. 2005 Feb 11;307(5711):896-901 [PMID: 15705844]
  84. J Neurosci. 2005 Oct 19;25(42):9807-15 [PMID: 16237184]
  85. Neuron. 2010 Nov 4;68(3):387-400 [PMID: 21040842]
  86. J Comput Neurosci. 2012 Oct;33(2):323-39 [PMID: 22403037]
  87. Nat Commun. 2019 Oct 18;10(1):4745 [PMID: 31628322]
  88. Nat Neurosci. 2014 Mar;17(3):440-8 [PMID: 24487233]
  89. Nat Neurosci. 2014 Mar;17(3):338-40 [PMID: 24569828]
  90. Exp Brain Res. 1978 Apr 14;31(4):573-90 [PMID: 658182]
  91. Exp Brain Res. 2009 Apr;194(3):369-80 [PMID: 19189086]
  92. Cell. 2017 Aug 24;170(5):986-999.e16 [PMID: 28823559]
  93. Science. 2000 Dec 22;290(5500):2323-6 [PMID: 11125150]
  94. Curr Biol. 2016 Jul 25;26(14):R656-60 [PMID: 27458907]
  95. Neuron. 2003 Sep 11;39(6):991-1004 [PMID: 12971898]
  96. Neural Netw. 2006 Jul-Aug;19(6-7):889-99 [PMID: 16787737]

Grants

  1. /Wellcome Trust
  2. 22152/Z/20/Z/Wellcome Trust
  3. 207481/Z/17/Z/Wellcome Trust

MeSH Term

Animals
Mice
Models, Neurological
Algorithms
Learning
Computer Simulation
Brain

Word Cloud

Created with Highcharts 10.0.0neuralanalysismanifoldmethodsneuronslearningmaydynamicslinearnon-linearmanifoldsNeuralpossibleactivityapproachesapplicableapproachdatasetslower-dimensionalcircuitbehavioralnumbercorticaltaskfinddisordersRecentdevelopmentsexperimentalneurosciencemakesimultaneouslyrecordthousandsHoweverdevelopmentlarge-scalerecordingsslowersingle-cellexperimentsOnegainedrecentpopularitytakesadvantagefactofteneventhoughhighdimensionaltendstraversemuchspacetopologicalstructuresformedlow-dimensionalsubspacesreferred"neuralmanifolds"potentiallyprovideinsightlinkingcognitivefunctionperformancepaperreviewincludingprincipalcomponentPCAmulti-dimensionalscalingMDSIsomaplocallyembeddingLLELaplacianeigenmapsLEMt-SNEuniformapproximationprojectionUMAPoutlinecommonmathematicalnomenclaturecompareadvantagesdisadvantagesrespectusedataapplypublishedliteraturecomparingresultapplicationhippocampalplacecellsmotorreachingprefrontalmulti-behaviormanycircumstancesalgorithmsproducesimilarresultsalthoughparticularcasescomplexitygreatertendexpenseinterpretabilitydemonstratestudyneurologicalsimulationmousemodelAlzheimer'sDiseasespeculatehelpusunderstandcircuit-levelconsequencesmolecularcellularneuropathologybrainhealthdiseaseDimensionalityreductionManifoldpopulationNeurological

Similar Articles

Cited By