Bioprospecting for fungal enzymes for applications in microalgal biomass biorefineries.

Araceli Natalia Bader, Lara Sanchez Rizza, Verónica Fabiana Consolo, Leonardo Curatti
Author Information
  1. Araceli Natalia Bader: Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina.
  2. Lara Sanchez Rizza: Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina.
  3. Verónica Fabiana Consolo: Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina.
  4. Leonardo Curatti: Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina. lcuratti@inbiotec.conicet.gov.ar. ORCID

Abstract

Microalgal biomass is a promising feedstock for biofuels, feed/food, and biomaterials. However, while production and commercialization of single-product commodities are still not economically viable, obtaining multiple products in a biomass biorefinery faces several techno-economic challenges. The aim of this study was to identify a suitable source of hydrolytic enzymes for algal biomass saccharification. Screening of twenty-six fungal isolates for secreted enzymes activity on Chlamydomonas reinhardtii biomass resulted in the identification of Aspergillus niger IB-34 as a candidate strain. Solid-state fermentation on wheat bran produced the most active enzyme preparations. From sixty-five proteins identified by liquid chromatography coupled to mass spectrometry (LC-MS) (ProteomeXchange, identifier PXD034998) from A. niger IB-34, the majority corresponded to predicted secreted proteins belonging to the Gene Ontology categories of catalytic activity/hydrolase activity on glycosyl and O-glycosyl compounds. Skimmed biomass of biotechnologically relevant strains towards the production of commodities, Chlorella sorokiniana and Scenedesmus obliquus, was fully saccharified after a mild pretreatment at 80 °C for 10 min, at a high biomass load of 10% (w/v). The soluble liquid stream, after skimming and saccharification of biomass of both strains, was further converted into ethanol by fermentation with Saccharomyces cerevisiae at a theoretical maximum efficiency, in a separated saccharification and fermentation assays. The resulting insoluble protein, after biomass skimming with an organic solvent and enzymatic saccharification, was highly digestible in an in vitro digestion assay. Proof of concept is presented for an enzyme-assisted biomass biorefinery recovering 81% of the main biomass fractions in a likely suitable form for the conversion of lipids and carbohydrates into biofuels and proteins into feed/food. KEY POINTS: • Twenty-six fungal extracts were analyzed for saccharification of microalgal biomass. • Skimmed biomass was fully enzymatically saccharified and fermented into ethanol. • Up to 81% recovery of biomass fractions suitable for biofuels and feed/food.

Keywords

References

  1. ’t Lam GP, Vermuë MH, Eppink MHM, Wijffels RH, van den Berg C (2018) Multi-product microalgae biorefineries: from concept towards reality. Trends Biotechnol 36:216–227. https://doi.org/10.1016/j.tibtech.2017.10.011 [DOI: 10.1016/j.tibtech.2017.10.011]
  2. Amorim M, Soares J, Coimbra J, Leite M, Albino L, Martins M (2020) Microalgae proteins: production, separation, isolation, quantification, and application in food and feed. Crit Rev Food Sci Nutr 61:1976–2002. https://doi.org/10.1080/10408398.2020.1768046 [DOI: 10.1080/10408398.2020.1768046]
  3. Bader AN, Sanchez Rizza L, Consolo VF, Curatti L (2020) Efficient saccharification of microalgal biomass by Trichoderma harzianum enzymes for the production of ethanol. Algal Res 48:101926. https://doi.org/10.1016/j.algal.2020.101926 [DOI: 10.1016/j.algal.2020.101926]
  4. Barsanti L, Gualtieri P (2018) Is exploitation of microalgae economically and energetically sustainable? Algal Res 31:107–115. https://doi.org/10.1016/j.algal.2018.02.001 [DOI: 10.1016/j.algal.2018.02.001]
  5. Battaglino RA, Huergo M, Pilosof AMR, Bartholomai GB (1991) Culture requirements for the production of protease by Aspergillus oryzae in solid state fermentation. Appl Microbiol Biotechnol 35:292–296. https://doi.org/10.1007/BF00172714 [DOI: 10.1007/BF00172714]
  6. Baudelet P-H, Ricochon G, Linder M, Muniglia L (2017) A new insight into cell walls of Chlorophyta. Algal Res 25:333–371. https://doi.org/10.1016/j.algal.2017.04.008 [DOI: 10.1016/j.algal.2017.04.008]
  7. Becker EW (2007) Micro-algae as a source of protein (2006). Biotechnol Adv 25:207–210. https://doi.org/10.1016/j.biotechadv.2006.11.002 [DOI: 10.1016/j.biotechadv.2006.11.002]
  8. Branco-Vieira M, Mata TM, Martins AA, Freitas MAV, Caetano NS (2020) Economic analysis of microalgae biodiesel production in a small-scale facility. Energy Rep 6:325–332. https://doi.org/10.1016/j.egyr.2020.11.156 [DOI: 10.1016/j.egyr.2020.11.156]
  9. Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R, Ballance S, Bohn T, Bourlieu-Lacanal C, Boutrou R, Carrière F, Clemente A, Corredig M, Dupont D, Dufour C, Edwards C, Golding M, Karakaya S, Kirkhus B, Le Feunteun S, Lesmes U, Macierzanka A, Mackie AR, Martins C, Marze S, McClements DJ, Ménard O, Minekus M, Portmann R, Santos CN, Souchon I, Singh RP, Vegarud GE, Wickham MSJ, Weitschies W, Recio I (2019) INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protoc 14:991–1014. https://doi.org/10.1038/s41596-018-0119-1 [DOI: 10.1038/s41596-018-0119-1]
  10. Cairns TC, Barthel L, Meyer V (2021) Something old, something new: challenges and developments in Aspergillus niger biotechnology. Essays Biochem 65:213–224. https://doi.org/10.1042/EBC20200139 [DOI: 10.1042/EBC20200139]
  11. Cheng D, Li D, Yuan Y, Zhou L, Li X, Wu T, Wang L, Zhao Q, Wei W, Sun Y (2017) Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution. Biotechnol Biofuels 10:75. https://doi.org/10.1186/s13068-017-0753-9 [DOI: 10.1186/s13068-017-0753-9]
  12. Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee DJ, Chang JS (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62. https://doi.org/10.1016/j.biortech.2017.01.006 [DOI: 10.1016/j.biortech.2017.01.006]
  13. Coronel CD, Curatti L (2021) Climate-simulated culturing suggests high microalgal biomass and oil productivities in most of the South American continent. Biotechnol J 16:2100067. https://doi.org/10.1002/biot.202100067
  14. Daneshvar E, Wicker RJ, Show P-L, Bhatnagar A (2022) Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO biofixation and biomass valorization – a review. Chem Eng J 427:130884. https://doi.org/10.1016/j.cej.2021.130884 [DOI: 10.1016/j.cej.2021.130884]
  15. Do Nascimento M, Ortiz-Marquez JCF, Sanchez-Rizza L, Echarte MM, Curatti L (2012) Bioprospecting for fast growing and biomass characterization of oleaginous microalgae from south–eastern Buenos Aires, Argentina. Bioresour Technol 125:283–290. https://doi.org/10.1016/j.biortech.2012.08.057 [DOI: 10.1016/j.biortech.2012.08.057]
  16. Dojnov B, Grujić M, Perčević B, Vujčić Z (2015) Enhancement of amylase production by Aspergillus sp. using carbohydrates mixtures from triticale. J Serb Chem Soc 80:1279–1288 [DOI: 10.2298/JSC150317043D]
  17. Dreywood R (1946) Qualitative test for carbohydrate material. Ind Eng Chem Anal Ed 18:499–499. https://doi.org/10.1021/i560156a015 [DOI: 10.1021/i560156a015]
  18. Dugan FM (2006) The identification of fungi: an illustrated introduction with keys, glossary, and guide to literature. St. Paul, Minn.: Amer Phytopathol Soc
  19. Gerken HG, Donohoe B, Knoshaug EP (2013) Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237:239–253. https://doi.org/10.1007/s00425-012-1765-0 [DOI: 10.1007/s00425-012-1765-0]
  20. Gifuni I, Pollio A, Safi C, Marzocchella A, Olivieri G (2019) Current bottlenecks and challenges of the microalgal biorefinery. Trends Biotechnol 37:242–252. https://doi.org/10.1016/j.tibtech.2018.09.006 [DOI: 10.1016/j.tibtech.2018.09.006]
  21. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.211 [DOI: 10.1038/nprot.2008.211]
  22. Huesemann M, Chavis A, Edmundson S, Rye D, Hobbs S, Sun N, Wigmosta M (2018) Climate-simulated raceway pond culturing: quantifying the maximum achievable annual biomass productivity of Chlorella sorokiniana in the contiguous USA. J Appl Phycol 30:287–298. https://doi.org/10.1007/s10811-017-1256-6
  23. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306. https://doi.org/10.1093/bib/bbn017 [DOI: 10.1093/bib/bbn017]
  24. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0 [DOI: 10.1038/227680a0]
  25. le Williams PJB, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554–590. https://doi.org/10.1039/B924978H [DOI: 10.1039/B924978H]
  26. Li K, Liu Q, Fang F, Luo R, Lu Q, Zhou W, Huo S, Cheng P, Liu J, Addy M, Chen P, Chen D, Ruan R (2019) Microalgae-based wastewater treatment for nutrients recovery: a review. Bioresour Technol 291:121934. https://doi.org/10.1016/j.biortech.2019.121934 [DOI: 10.1016/j.biortech.2019.121934]
  27. Li T, Zheng Y, Yu L, Chen S (2014) Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenergy 66:204–213. https://doi.org/10.1016/j.biombioe.2014.04.010
  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/S0021-9258(19)52451-6 [DOI: 10.1016/S0021-9258(19)52451-6]
  29. Maeda Y, Yoshino T, Matsunaga T, Matsumoto M, Tanaka T (2018) Marine microalgae for production of biofuels and chemicals. Curr Opin Biotechnol 50:111–120. https://doi.org/10.1016/j.copbio.2017.11.018 [DOI: 10.1016/j.copbio.2017.11.018]
  30. Monjed MK, Achour B, Robson GD, Pittman JK (2021) Improved saccharification of Chlorella vulgaris biomass by fungal secreted enzymes for bioethanol production. Algal Res 58:102402. https://doi.org/10.1016/j.algal.2021.102402 [DOI: 10.1016/j.algal.2021.102402]
  31. Monjed MK, Robson GD, Pittman JK (2020) Isolation of fungal strains for biodegradation and saccharification of microalgal biomass. Biomass Bioenergy 137:105547. https://doi.org/10.1016/j.biombioe.2020.105547 [DOI: 10.1016/j.biombioe.2020.105547]
  32. Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380. https://doi.org/10.1016/S0021-9258(18)71980-7 [DOI: 10.1016/S0021-9258(18)71980-7]
  33. Niccolai A, Chini Zittelli G, Rodolfi L, Biondi N, Tredici MR (2019) Microalgae of interest as food source: biochemical composition and digestibility. Algal Res 42:101617. https://doi.org/10.1016/j.algal.2019.101617 [DOI: 10.1016/j.algal.2019.101617]
  34. Ortiz-Marquez JCF, Nascimento MD, delos Dublan MA, Curatti L (2012) Association with an ammonium-excreting bacterium allows diazotrophic culture of oil-rich eukaryotic microalgae. Appl Environ Microbiol 78:2345–2352 [DOI: 10.1128/AEM.06260-11]
  35. Pires JCM, Alvim-Ferraz MCM, Martins FG, Simões M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sust Energ Rev 16:3043–3053. https://doi.org/10.1016/j.rser.2012.02.055 [DOI: 10.1016/j.rser.2012.02.055]
  36. Ruiz J, Olivieri G, de Vree J, Bosma R, Willems P, Hans Reith J, Eppink MHM, Kleinegris DMM, Wijffels RH, Barbosa MJ (2016) Towards industrial products from microalgae. Energy Environ Sci 9:3036–3043. https://doi.org/10.1039/C6EE01493C [DOI: 10.1039/C6EE01493C]
  37. Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR (2014) Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev 78:614–649. https://doi.org/10.1128/MMBR.00035-14 [DOI: 10.1128/MMBR.00035-14]
  38. Sanchez Rizza L, Sanz Smachetti ME, Do Nascimento M, Salerno GL, Curatti L (2017) Bioprospecting for native microalgae as an alternative source of sugars for the production of bioethanol. Algal Res 22:140–147. https://doi.org/10.1016/j.algal.2016.12.021 [DOI: 10.1016/j.algal.2016.12.021]
  39. Sankaran R, Parra Cruz RA, Pakalapati H, Show PL, Ling TC, Chen W-H, Tao Y (2020) Recent advances in the pretreatment of microalgal and lignocellulosic biomass: a comprehensive review. Bioresour Technol 298:122476. https://doi.org/10.1016/j.biortech.2019.122476 [DOI: 10.1016/j.biortech.2019.122476]
  40. Sanz Smachetti ME, Sanchez Rizza L, Coronel CD, Do Nascimento M, Curatti L (2018) Microalgal biomass as an alternative source of sugars for the production of bioethanol. in principles and applications of fermentation technology. In: Kuila A, Sharma V (eds), John Wiley & Sons, Ltd. Hoboken, NJ, pp 351–386
  41. Shinoda K, Tomita M, Ishihama Y (2010) emPAI Calc—for the estimation of protein abundance from large-scale identification data by liquid chromatography-tandem mass spectrometry. Bioinformatics 26:576–577. https://doi.org/10.1093/bioinformatics/btp700 [DOI: 10.1093/bioinformatics/btp700]
  42. Shuba ES, Kifle D (2018) Microalgae to biofuels: ‘promising’ alternative and renewable energy, review. Renew Sust Energ Rev 81:743–755. https://doi.org/10.1016/j.rser.2017.08.042 [DOI: 10.1016/j.rser.2017.08.042]
  43. Slegers PM, Olivieri G, Breitmayer E, Sijtsma L, Eppink MHM, Wijffels RH, Reith JH (2020) Design of value chains for microalgal biorefinery at industrial scale: process integration and techno-economic analysis. Front Bioeng Biotechnol 8:1048. https://doi.org/10.3389/fbioe.2020.550758 [DOI: 10.3389/fbioe.2020.550758]
  44. Takahashi S (1978) Sodium borohydride as a reducing agent for preparing ninhydrin reagent for amino acid analysis. J Biochem 83:57–60. https://doi.org/10.1093/oxfordjournals.jbchem.a131912 [DOI: 10.1093/oxfordjournals.jbchem.a131912]
  45. Tang D, Han W, Li P, Miao X, Zhong J (2011) CO biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO levels. Bioresour Technol 102:3071–3076. https://doi.org/10.1016/j.biortech.2010.10.047
  46. Torres-Tiji Y, Fields FJ, Mayfield SP (2020) Microalgae as a future food source. Biotechnol Adv 41:107536. https://doi.org/10.1016/j.biotechadv.2020.107536 [DOI: 10.1016/j.biotechadv.2020.107536]
  47. Walsh MJ, Doren LGV, Sills DL, Archibald I, Beal CM, Lei XG, Huntley ME, Johnson Z, Greene CH (2016) Algal food and fuel coproduction can mitigate greenhouse gas emissions while improving land and water-use efficiency. Environ Res Lett 11:114006. https://doi.org/10.1088/1748-9326/11/11/114006 [DOI: 10.1088/1748-9326/11/11/114006]
  48. Weenink XO, Punt PJ, van den Hondel CAMJJ, Ram AFJ (2006) A new method for screening and isolation of hypersecretion mutants in Aspergillus niger. Appl Microbiol Biotechnol 69:711–717. https://doi.org/10.1007/s00253-005-0013-y
  49. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29:949–982. https://doi.org/10.1007/s10811-016-0974-5 [DOI: 10.1007/s10811-016-0974-5]
  50. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, Gelfand MA, Sninsky DH, White TJ (eds), PCR protocols: a guide to methods and applications. Acad Press 315–322.  https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  51. Yellapu SK, Bharti KR, Kumar LR, Tiwari B, Zhang X, Tyagi RD (2018) Recent developments of downstream processing for microbial lipids and conversion to biodiesel. Bioresour Technol 256:515–528. https://doi.org/10.1016/j.biortech.2018.01.129 [DOI: 10.1016/j.biortech.2018.01.129]
  52. Yuan X-L, van der Kaaij RM, van den Hondel CAMJJ, Punt PJ, van der Maarel MJEC, Dijkhuizen L, Ram AFJ (2008) Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles. Mol Genet Genomics 279:545–561. https://doi.org/10.1007/s00438-008-0332-7 [DOI: 10.1007/s00438-008-0332-7]

Grants

  1. PICT2015 - 3559/FONCyT

MeSH Term

Chlorella
Biomass
Microalgae
Biofuels
Bioprospecting
Fermentation
Hydrolysis
Saccharomyces cerevisiae
Ethanol

Chemicals

Biofuels
Ethanol

Word Cloud

Created with Highcharts 10.0.0biomasssaccharificationenzymesbiofuelsfeed/foodsuitablefungalfermentationproteinsproductioncommoditiesbiorefinerysecretedactivitynigerIB-34liquidSkimmedstrainsfullysaccharifiedskimmingethanoldigestion81%fractionsmicroalgalMicroalgalpromisingfeedstockbiomaterialsHowevercommercializationsingle-productstilleconomicallyviableobtainingmultipleproductsfacesseveraltechno-economicchallengesaimstudyidentifysourcehydrolyticalgalScreeningtwenty-sixisolatesChlamydomonasreinhardtiiresultedidentificationAspergilluscandidatestrainSolid-statewheatbranproducedactiveenzymepreparationssixty-fiveidentifiedchromatographycoupledmassspectrometryLC-MSProteomeXchangeidentifierPXD034998majoritycorrespondedpredictedbelongingGeneOntologycategoriescatalyticactivity/hydrolaseglycosylO-glycosylcompoundsbiotechnologicallyrelevanttowardsChlorellasorokinianaScenedesmusobliquusmildpretreatment80 °C10 minhighload10%w/vsolublestreamconvertedSaccharomycescerevisiaetheoreticalmaximumefficiencyseparatedassaysresultinginsolubleproteinorganicsolventenzymatichighlydigestiblevitroassayProofconceptpresentedenzyme-assistedrecoveringmainlikelyformconversionlipidscarbohydratesKEYPOINTS:Twenty-sixextractsanalyzedenzymaticallyfermentedrecoveryBioprospectingapplicationsbiorefineriesEthanolFungalProteinSaccharificationSecretome

Similar Articles

Cited By