Efficient in vivo neuronal genome editing in the mouse brain using nanocapsules containing CRISPR-Cas9 ribonucleoproteins.

Jeanette M Metzger, Yuyuan Wang, Samuel S Neuman, Kathy J Snow, Stephen A Murray, Cathleen M Lutz, Viktoriya Bondarenko, Jesi Felton, Kirstan Gimse, Ruosen Xie, Dongdong Li, Yi Zhao, Matthew T Flowers, Heather A Simmons, Subhojit Roy, Krishanu Saha, Jon E Levine, Marina E Emborg, Shaoqin Gong
Author Information
  1. Jeanette M Metzger: Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA.
  2. Yuyuan Wang: Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA.
  3. Samuel S Neuman: Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA.
  4. Kathy J Snow: The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
  5. Stephen A Murray: The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
  6. Cathleen M Lutz: The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
  7. Viktoriya Bondarenko: Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA.
  8. Jesi Felton: Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA.
  9. Kirstan Gimse: Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA.
  10. Ruosen Xie: Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA.
  11. Dongdong Li: Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA.
  12. Yi Zhao: Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA.
  13. Matthew T Flowers: Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA.
  14. Heather A Simmons: Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA.
  15. Subhojit Roy: Departments of Pathology and Neuroscience, University of California-San Diego, San Diego, CA, 92093, USA.
  16. Krishanu Saha: Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA.
  17. Jon E Levine: Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53715, USA.
  18. Marina E Emborg: Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53715, USA. Electronic address: emborg@wisc.edu.
  19. Shaoqin Gong: Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA. Electronic address: shaoqingong@wisc.edu.

Abstract

Genome editing of somatic cells via clustered regularly interspaced short palindromic repeats (CRISPR) offers promise for new therapeutics to treat a variety of genetic disorders, including neurological diseases. However, the dense and complex parenchyma of the brain and the post-mitotic state of neurons make efficient genome editing challenging. In vivo delivery systems for CRISPR-Cas proteins and single guide RNA (sgRNA) include both viral vectors and non-viral strategies, each presenting different advantages and disadvantages for clinical application. We developed non-viral and biodegradable PEGylated nanocapsules (NCs) that deliver preassembled Cas9-sgRNA ribonucleoproteins (RNPs). Here, we show that the RNP NCs led to robust genome editing in neurons following intracerebral injection into the healthy mouse striatum. Genome editing was predominantly observed in medium spiny neurons (>80%), with occasional editing in cholinergic, calretinin, and parvalbumin interneurons. Glial activation was minimal and was localized along the needle tract. Our results demonstrate that the RNP NCs are capable of safe and efficient neuronal genome editing in vivo.

Keywords

References

  1. Nat Nanotechnol. 2019 Oct;14(10):974-980 [PMID: 31501532]
  2. Mol Pharm. 2013 May 6;10(5):1492-504 [PMID: 23298378]
  3. Front Neuroanat. 2010 Dec 29;4:150 [PMID: 21228905]
  4. ACS Nano. 2014 Oct 28;8(10):10655-64 [PMID: 25259648]
  5. J Control Release. 2021 Aug 10;336:296-309 [PMID: 34174352]
  6. Circulation. 2023 Jan 17;147(3):242-253 [PMID: 36314243]
  7. J Neurosci. 2019 Jul 17;39(29):5647-5661 [PMID: 31109960]
  8. Cell. 2014 Oct 9;159(2):440-55 [PMID: 25263330]
  9. Trends Mol Med. 2018 Oct;24(10):822-824 [PMID: 30104136]
  10. Nat Rev Neurosci. 2016 Jan;17(1):36-44 [PMID: 26656253]
  11. Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5567-72 [PMID: 16567637]
  12. Science. 2020 Feb 28;367(6481): [PMID: 32029687]
  13. Nat Med. 2019 Feb;25(2):229-233 [PMID: 30664785]
  14. Front Integr Neurosci. 2021 Oct 05;15:715190 [PMID: 34675786]
  15. Biomaterials. 2018 Jul;171:207-218 [PMID: 29704747]
  16. Sci Adv. 2020 Mar 18;6(12):eaay6687 [PMID: 32206715]
  17. Pharmaceutics. 2020 Dec 15;12(12): [PMID: 33334049]
  18. Nat Neurosci. 2010 Jan;13(1):133-40 [PMID: 20023653]
  19. Signal Transduct Target Ther. 2021 Feb 8;6(1):53 [PMID: 33558455]
  20. Nat Commun. 2017 Nov 23;8(1):1711 [PMID: 29167458]
  21. Nat Commun. 2019 Jan 3;10(1):53 [PMID: 30604771]
  22. J Neurosci. 2008 Jan 16;28(3):622-32 [PMID: 18199763]
  23. Nat Biotechnol. 2015 Jan;33(1):102-6 [PMID: 25326897]
  24. Brain. 2020 Mar 1;143(3):891-905 [PMID: 32129831]
  25. Nat Commun. 2018 Dec 6;9(1):5211 [PMID: 30523254]
  26. Nat Commun. 2019 Sep 30;10(1):4439 [PMID: 31570731]
  27. Neurotherapeutics. 2017 Apr;14(2):358-371 [PMID: 28299724]
  28. Gene Ther. 2021 Aug;28(7-8):456-468 [PMID: 33612827]
  29. Front Immunol. 2021 Mar 17;12:658399 [PMID: 33815421]
  30. Genome Res. 2014 Jun;24(6):1012-9 [PMID: 24696461]
  31. Mol Ther. 2021 Feb 3;29(2):571-586 [PMID: 33238136]
  32. Nat Biomed Eng. 2018 Jul;2(7):497-507 [PMID: 30948824]
  33. Nat Neurosci. 2019 Apr;22(4):524-528 [PMID: 30858603]
  34. Nat Methods. 2016 Oct;13(10):868-74 [PMID: 27595405]
  35. Nature. 2021 Apr;592(7853):195-204 [PMID: 33828315]
  36. Biomater Sci. 2021 Feb 21;9(4):1065-1087 [PMID: 33315025]
  37. Eur Radiol. 2004 Oct;14(10):1851-8 [PMID: 15249981]
  38. Handb Exp Pharmacol. 2022;273:97-120 [PMID: 33474672]
  39. Brain Res. 2005 Feb 28;1035(2):139-53 [PMID: 15722054]
  40. Int J Pharm. 2016 May 30;505(1-2):271-82 [PMID: 27001531]
  41. Mol Ther Methods Clin Dev. 2018 Dec 06;12:111-122 [PMID: 30619914]
  42. J Clin Invest. 2017 Jun 30;127(7):2719-2724 [PMID: 28628038]
  43. Nat Biotechnol. 2017 May;35(5):431-434 [PMID: 28191903]
  44. N Engl J Med. 2021 Aug 5;385(6):493-502 [PMID: 34215024]
  45. J Biotechnol. 2015 Aug 20;208:44-53 [PMID: 26003884]
  46. Sci Transl Med. 2012 Aug 29;4(149):149ra119 [PMID: 22932224]
  47. Neuron. 2017 Nov 15;96(4):755-768.e5 [PMID: 29056297]
  48. Mol Neurobiol. 2021 Oct;58(10):5112-5126 [PMID: 34250577]
  49. ILAR J. 2017 Dec 1;58(2):190-201 [PMID: 28985333]
  50. JAMA. 2015 Feb 24;313(8):791-2 [PMID: 25710652]
  51. Cell Transplant. 2017 Apr 13;26(4):613-624 [PMID: 27633706]
  52. Front Genet. 2021 May 12;12:673286 [PMID: 34054927]
  53. Nat Commun. 2015 Jun 11;6:7391 [PMID: 26067104]
  54. Biomaterials. 2019 Jul;209:25-40 [PMID: 31026609]
  55. Gene Ther. 2021 Nov;28(10-11):646-658 [PMID: 33558692]
  56. Front Aging Neurosci. 2020 Jan 10;11:373 [PMID: 31998120]

Grants

  1. UH3 NS111688/NINDS NIH HHS
  2. UG3 NS111688/NINDS NIH HHS
  3. T32 HG002760/NHGRI NIH HHS
  4. S10 OD025040/NIH HHS
  5. U42 OD026635/NIH HHS
  6. P51 OD011106/NIH HHS

MeSH Term

Animals
Mice
Gene Editing
CRISPR-Cas Systems
Nanocapsules
Ribonucleoproteins
Neurons
Brain

Chemicals

Nanocapsules
Ribonucleoproteins

Word Cloud

Created with Highcharts 10.0.0editinggenomeGenomeneuronsvivoNCsCRISPRbrainefficientnon-viralnanocapsulesribonucleoproteinsRNPmouseneuronalsomaticcellsviaclusteredregularlyinterspacedshortpalindromicrepeatsofferspromisenewtherapeuticstreatvarietygeneticdisordersincludingneurologicaldiseasesHoweverdensecomplexparenchymapost-mitoticstatemakechallengingdeliverysystemsCRISPR-CasproteinssingleguideRNAsgRNAincludeviralvectorsstrategiespresentingdifferentadvantagesdisadvantagesclinicalapplicationdevelopedbiodegradablePEGylateddeliverpreassembledCas9-sgRNARNPsshowledrobustfollowingintracerebralinjectionhealthystriatumpredominantlyobservedmediumspiny>80%occasionalcholinergiccalretininparvalbumininterneuronsGlialactivationminimallocalizedalongneedletractresultsdemonstratecapablesafeEfficientusingcontainingCRISPR-Cas9BrainNanocapsuleNanoparticleNeuron

Similar Articles

Cited By