Innovative biosynthesis, artificial intelligence-based optimization, and characterization of chitosan nanoparticles by Streptomyces microflavus and their inhibitory potential against Pectobacterium carotovorum.

Noura El-Ahmady El-Naggar, Shimaa I Bashir, Nashwa H Rabei, WesamEldin I A Saber
Author Information
  1. Noura El-Ahmady El-Naggar: Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt. nelahmady@srtacity.sci.eg. ORCID
  2. Shimaa I Bashir: Department of Plant Protection and Biomolecular Diagnosis, Arid Land Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
  3. Nashwa H Rabei: Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
  4. WesamEldin I A Saber: Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt.

Abstract

Microbial-based strategy in nanotechnology offers economic, eco-friendly, and biosafety advantages over traditional chemical and physical protocols. The current study describes a novel biosynthesis protocol for chitosan nanoparticles (CNPs), employing a pioneer Streptomyces sp. strain NEAE-83, which exhibited a significant potential for CNPs biosynthesis. It was identified as Streptomyces microflavus strain NEAE-83 based on morphological, and physiological properties as well as the 16S rRNA sequence (GenBank accession number: MG384964). CNPs were characterized by SEM, TEM, EDXS, zeta potential, FTIR, XRD, TGA, and DSC. CNPs biosynthesis was maximized using a mathematical model, face-centered central composite design (CCFCD). The highest yield of CNPs (9.41 mg/mL) was obtained in run no. 27, using an initial pH of 5.5, 1% chitosan, 40 °C, and a 12 h incubation period. Innovatively, the artificial neural network (ANN), was used for validating and predicting CNPs biosynthesis based on the trials data of CCFCD. Despite the high precision degree of both models, ANN was supreme in the prediction of CNPs biosynthesis compared to CCFCD. ANN had a higher prediction efficacy and, lower error values (RMSE, MDA, and SSE). CNPs biosynthesized by Streptomyces microflavus strain NEAE-83 showed in-vitro antibacterial activity against Pectobacterium carotovorum, which causes the potato soft rot. These results suggested its potential application for controlling the destructive potato soft rot diseases. This is the first report on the biosynthesis of CNPs using a newly isolated; Streptomyces microflavus strain NEAE-83 as an eco-friendly approach and optimization of the biosynthesis process by artificial intelligence.

References

  1. Sci Rep. 2020 May 14;10(1):7942 [PMID: 32409719]
  2. Sci Rep. 2021 Oct 22;11(1):20908 [PMID: 34686690]
  3. Int J Biomater. 2012;2012:632698 [PMID: 22829829]
  4. World J Microbiol Biotechnol. 2013 Mar;29(3):411-20 [PMID: 23117674]
  5. J Nanobiotechnology. 2022 Jun 7;20(1):262 [PMID: 35672712]
  6. Iran J Microbiol. 2016 Apr;8(2):93-100 [PMID: 27307974]
  7. J Nanosci Nanotechnol. 2007 Jun;7(6):1911-5 [PMID: 17654964]
  8. Sci Rep. 2020 Oct 15;10(1):17439 [PMID: 33060658]
  9. Drug Deliv. 2004 Mar-Apr;11(2):107-12 [PMID: 15200009]
  10. Front Microbiol. 2021 Oct 22;12:731262 [PMID: 34745034]
  11. Sci Rep. 2022 Mar 3;12(1):3515 [PMID: 35241695]
  12. Sci Rep. 2021 Jan 18;11(1):1717 [PMID: 33462359]
  13. Polymers (Basel). 2021 Sep 24;13(19): [PMID: 34641071]
  14. Nanoscale Res Lett. 2011 Dec;6(1):32 [PMID: 27502655]
  15. Carbohydr Polym. 2016 Oct 20;151:321-325 [PMID: 27474573]
  16. Front Plant Sci. 2013 Jun 11;4:191 [PMID: 23781227]
  17. Plant Dis. 2018 Sep;102(9):1834-1840 [PMID: 30125186]
  18. Pharmaceutics. 2017 Nov 20;9(4): [PMID: 29156634]
  19. J Nanopart Res. 2013 Apr 1;15(4):1651 [PMID: 24363607]
  20. Sci Rep. 2020 Sep 29;10(1):16021 [PMID: 32994453]
  21. J Microbiol Biotechnol. 2014 Apr;24(4):453-64 [PMID: 24375417]
  22. Sci Rep. 2017 Sep 7;7(1):10844 [PMID: 28883419]
  23. Int J Biol Macromol. 2018 Oct 15;118(Pt A):881-885 [PMID: 29964105]
  24. Lett Appl Microbiol. 2017 Jun;64(6):401-408 [PMID: 28267874]
  25. Nanotoxicology. 2011 Dec;5(4):517-30 [PMID: 21142841]
  26. Biomed Res Int. 2015;2015:627031 [PMID: 26180806]
  27. Saudi Pharm J. 2016 Jul;24(4):473-84 [PMID: 27330378]
  28. Carbohydr Res. 2004 Nov 15;339(16):2693-700 [PMID: 15519328]
  29. J Microbiol. 2014 Jan;52(1):53-63 [PMID: 24390838]
  30. Int J Biol Macromol. 2015 Nov;81:672-80 [PMID: 26322815]
  31. Biomacromolecules. 2017 Nov 13;18(11):3846-3868 [PMID: 28933147]
  32. Sci Rep. 2021 May 5;11(1):9540 [PMID: 33953277]
  33. J Gen Microbiol. 1983 Jun;129(6):1743-813 [PMID: 6631406]
  34. Sci Rep. 2018 Feb 9;8(1):2706 [PMID: 29426900]
  35. Sci Rep. 2018 Jun 12;8(1):8925 [PMID: 29895869]
  36. Sci Rep. 2019 Feb 25;9(1):2639 [PMID: 30804441]
  37. Ann Appl Biol. 2015 Jan;166(1):18-38 [PMID: 25684775]
  38. Int J Biol Macromol. 2017 Apr;97:115-122 [PMID: 28082219]
  39. Curr Pharm Biotechnol. 2015;16(2):162-78 [PMID: 25395212]
  40. Sci Rep. 2020 Aug 20;10(1):14043 [PMID: 32820181]
  41. Braz J Microbiol. 2014 Aug 29;45(2):743-56 [PMID: 25242966]
  42. Acta Pharmacol Sin. 2004 Jul;25(7):932-6 [PMID: 15210068]
  43. Int J Biol Macromol. 2013 Jun;57:204-12 [PMID: 23500442]
  44. Int J Biol Macromol. 2021 Jan 1;166:1365-1376 [PMID: 33161079]
  45. Biomed Res Int. 2019 May 26;2019:5785387 [PMID: 31240217]
  46. Int J Biol Macromol. 2016 Dec;93(Pt A):1261-1272 [PMID: 27664927]
  47. Int J Biol Macromol. 2018 Dec;120(Pt B):1610-1617 [PMID: 30282010]
  48. Int J Biol Macromol. 2022 Jun 1;209(Pt B):2188-2196 [PMID: 35504421]

MeSH Term

Pectobacterium carotovorum
RNA, Ribosomal, 16S
Chitosan
Artificial Intelligence
Streptomyces
Solanum tuberosum
Nanoparticles

Chemicals

RNA, Ribosomal, 16S
Chitosan

Word Cloud

Created with Highcharts 10.0.0CNPsbiosynthesisStreptomycesstrainNEAE-83potentialmicroflavuschitosanusingCCFCDartificialANNeco-friendlynanoparticlesbased5predictionPectobacteriumcarotovorumpotatosoftrotoptimizationMicrobial-basedstrategynanotechnologyofferseconomicbiosafetyadvantagestraditionalchemicalphysicalprotocolscurrentstudydescribesnovelprotocolemployingpioneerspexhibitedsignificantidentifiedmorphologicalphysiologicalpropertieswell16SrRNAsequenceGenBankaccessionnumber:MG384964characterizedSEMTEMEDXSzetaFTIRXRDTGADSCmaximizeda mathematical modelface-centeredcentralcompositedesignhighestyield941mg/mLobtainedrun27an initialpH of 1%40 °Ca 12 hincubationperiodInnovativelyneuralnetworkused forvalidatingpredictingtrialsdataDespitehighprecisiondegreemodelssupremecomparedhigherefficacylowererrorvaluesRMSEMDASSEbiosynthesizedshowedin-vitroantibacterialactivitycausesresultssuggestedapplicationcontrollingdestructivediseasesfirstreporta newlyisolatedapproachprocessintelligenceInnovativeintelligence-basedcharacterizationinhibitory

Similar Articles

Cited By