Patient-derived cell models for personalized medicine approaches in cystic fibrosis.

Anabela S Ramalho, Felice Amato, Martina Gentzsch
Author Information
  1. Anabela S Ramalho: Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
  2. Felice Amato: Department Of Molecular Medicine and Medical Biotechnologies and CE.IN.GE - Biotecnologie Avanzate, University of Naples Federico II, Naples, Italy.
  3. Martina Gentzsch: Marsico Lung Institute - Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA. Electronic address: gentzsch@med.unc.edu.

Abstract

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) channel that perturb anion transport across the epithelia of the airways and other organs. To treat cystic fibrosis, strategies that target mutant CFTR have been developed such as correctors that rescue folding and enhance transfer of CFTR to the apical membrane, and potentiators that increase CFTR channel activity. While there has been tremendous progress in development and approval of CFTR therapeutics for the most common (F508del) and several other CFTR mutations, around 10-20% of people with cystic fibrosis have rare mutations that are still without an effective treatment. In the current decade, there was an impressive evolution of patient-derived cell models for precision medicine. In cystic fibrosis, these models have played a crucial role in characterizing the molecular defects in CFTR mutants and identifying compounds that target these defects. Cells from nasal, bronchial, and rectal epithelia are most suitable to evaluate treatments that target CFTR. In vitro assays using cultures grown at an air-liquid interface or as organoids and spheroids allow the diagnosis of the CFTR defect and assessment of potential treatment strategies. An overview of currently established cell culture models and assays for personalized medicine approaches in cystic fibrosis will be provided in this review. These models allow theratyping of rare CFTR mutations with available modulator compounds to predict clinical efficacy. Besides evaluation of individual personalized responses to CFTR therapeutics, patient-derived culture models are valuable for testing responses to developmental treatments such as novel RNA- and DNA-based therapies.

Keywords

References

  1. Biomed Eng Comput Biol. 2016 Apr 20;7(Suppl 1):17-27 [PMID: 27127414]
  2. PLoS One. 2021 Jun 4;16(6):e0251881 [PMID: 34086689]
  3. J Pers Med. 2022 Apr 14;12(4): [PMID: 35455747]
  4. J Cyst Fibros. 2018 May;17(3):316-324 [PMID: 29544685]
  5. Am J Physiol Lung Cell Mol Physiol. 2022 Apr 1;322(4):L526-L538 [PMID: 35137633]
  6. Mol Genet Genomic Med. 2021 Apr;9(4):e1656 [PMID: 33713579]
  7. J Cyst Fibros. 2018 Jan;17(1):26-33 [PMID: 28712885]
  8. STAR Protoc. 2020 Jun 03;1(1):100019 [PMID: 33111074]
  9. J Cyst Fibros. 2018 Mar;17(2S):S52-S60 [PMID: 28986017]
  10. Chest. 2018 Aug;154(2):383-393 [PMID: 29750923]
  11. Eur Respir J. 2020 Jul 30;56(1): [PMID: 32265312]
  12. ACS Pharmacol Transl Sci. 2019 Oct 02;3(1):4-10 [PMID: 32259083]
  13. Biochim Biophys Acta Mol Basis Dis. 2019 Jun 1;1865(6):1323-1331 [PMID: 30716472]
  14. J Cyst Fibros. 2022 Sep;21(5):856-860 [PMID: 35527187]
  15. Science. 1989 Sep 8;245(4922):1066-73 [PMID: 2475911]
  16. Eur Respir J. 2022 Feb 3;59(2): [PMID: 34172469]
  17. Eur Respir J. 2021 Jan 5;57(1): [PMID: 32747394]
  18. N Engl J Med. 2018 Oct 25;379(17):1612-1620 [PMID: 30334692]
  19. Genes (Basel). 2021 Jul 29;12(8): [PMID: 34440351]
  20. Am J Physiol Lung Cell Mol Physiol. 2022 Mar 1;322(3):L420-L437 [PMID: 35080188]
  21. Eur J Med Chem. 2020 Oct 15;204:112631 [PMID: 32898816]
  22. Cells. 2020 Sep 13;9(9): [PMID: 32933106]
  23. PLoS Genet. 2020 Oct 21;16(10):e1009100 [PMID: 33085659]
  24. J Cyst Fibros. 2019 Jan;18(1):22-34 [PMID: 29934203]
  25. Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18825-30 [PMID: 19846789]
  26. Hum Mutat. 2019 Jun;40(6):742-748 [PMID: 30851139]
  27. ACS Biomater Sci Eng. 2022 Jun 13;8(6):2684-2699 [PMID: 35502997]
  28. J Cyst Fibros. 2020 Sep;19(5):752-761 [PMID: 32565193]
  29. EMBO J. 2019 Feb 15;38(4): [PMID: 30643021]
  30. Int J Mol Sci. 2022 Mar 15;23(6): [PMID: 35328596]
  31. Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15370-5 [PMID: 17873061]
  32. Am J Respir Cell Mol Biol. 2017 May;56(5):568-574 [PMID: 27983869]
  33. Eur Respir J. 2021 Dec 2;58(6): [PMID: 34413153]
  34. Lancet. 2019 Nov 23;394(10212):1940-1948 [PMID: 31679946]
  35. Nat Med. 2013 Jul;19(7):939-45 [PMID: 23727931]
  36. J Cyst Fibros. 2020 Mar;19 Suppl 1:S60-S64 [PMID: 31787574]
  37. N Engl J Med. 2011 Nov 3;365(18):1663-72 [PMID: 22047557]
  38. Am J Physiol Cell Physiol. 2010 Apr;298(4):C866-74 [PMID: 20053923]
  39. Pulm Pharmacol Ther. 2010 Aug;23(4):268-78 [PMID: 20226262]
  40. J Physiol. 2022 Mar;600(6):1285-1286 [PMID: 35038767]
  41. JCI Insight. 2018 Jul 12;3(13): [PMID: 29997283]
  42. Methods Mol Biol. 2011;742:285-310 [PMID: 21547740]
  43. JCI Insight. 2016 Sep 8;1(14): [PMID: 27660821]
  44. Curr Opin Pharmacol. 2022 Jun;64:102210 [PMID: 35462105]
  45. Science. 2013 Jun 7;340(6137):1190-4 [PMID: 23744940]
  46. Cell Rep. 2019 Feb 12;26(7):1701-1708.e3 [PMID: 30759382]
  47. Lancet Respir Med. 2016 Aug;4(8):662-674 [PMID: 27053340]
  48. Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18843-8 [PMID: 21976485]
  49. Clin Transl Sci. 2021 Mar;14(2):656-663 [PMID: 33278322]
  50. J Cyst Fibros. 2022 Jul;21(4):606-615 [PMID: 34799298]
  51. Pediatr Transplant. 2023 Feb;27(1):e14404 [PMID: 36206358]
  52. Expert Opin Drug Discov. 2021 Aug;16(8):897-913 [PMID: 33823716]
  53. Drug Discov Today. 2022 Sep;27(9):2593-2602 [PMID: 35724916]
  54. Eur Respir J. 2022 Aug 10;60(2): [PMID: 34996830]
  55. J Physiol. 2005 Dec 1;569(Pt 2):601-15 [PMID: 16210354]
  56. Sci Rep. 2017 Aug 7;7(1):7375 [PMID: 28785019]
  57. Thorax. 2021 Nov;76(11):1146-1149 [PMID: 33859053]
  58. Am J Physiol Lung Cell Mol Physiol. 2016 Sep 1;311(3):L550-9 [PMID: 27402691]
  59. JCI Insight. 2017 Nov 16;2(22): [PMID: 29202459]
  60. Eur J Med Chem. 2019 Oct 15;180:430-448 [PMID: 31326599]
  61. Antibiotics (Basel). 2021 Jul 07;10(7): [PMID: 34356748]
  62. Acta Otorhinolaryngol Ital. 2017 Jun;37(3):207-213 [PMID: 27897275]
  63. N Engl J Med. 2019 Nov 7;381(19):1809-1819 [PMID: 31697873]
  64. EBioMedicine. 2014 Dec 17;2(2):147-53 [PMID: 26137539]
  65. J Cyst Fibros. 2021 Jan;20(1):106-119 [PMID: 32741662]

Grants

  1. P30 DK065988/NIDDK NIH HHS

MeSH Term

Humans
Cystic Fibrosis
Cystic Fibrosis Transmembrane Conductance Regulator
Precision Medicine
Mutation
Bronchi

Chemicals

Cystic Fibrosis Transmembrane Conductance Regulator

Word Cloud

Created with Highcharts 10.0.0CFTRfibrosiscysticmodelsmutationstargetcellmedicinepersonalizedchannelepitheliastrategiestherapeuticsraretreatmentpatient-deriveddefectscompoundstreatmentsassaysallowcultureapproachesresponsesCysticcausedtransmembraneconductanceregulatorperturbaniontransportacrossairwaysorganstreatmutantdevelopedcorrectorsrescuefoldingenhancetransferapicalmembranepotentiatorsincreaseactivitytremendousprogressdevelopmentapprovalcommonF508delseveralaround10-20%peoplestillwithouteffectivecurrentdecadeimpressiveevolutionprecisionplayedcrucialrolecharacterizingmolecularmutantsidentifyingCellsnasalbronchialrectalsuitableevaluatevitrousingculturesgrownair-liquidinterfaceorganoidsspheroidsdiagnosisdefectassessmentpotentialoverviewcurrentlyestablishedwillprovidedreviewtheratypingavailablemodulatorpredictclinicalefficacyBesidesevaluationindividualvaluabletestingdevelopmentalnovelRNA-DNA-basedtherapiesPatient-derivedModulatorOrganoidPrimaryhumanepithelialcellsSpheroidTheratyping

Similar Articles

Cited By