Evaluation of the antibacterial, antibiofilm, and anti-virulence effects of acetic acid and the related mechanisms on colistin-resistant Pseudomonas aeruginosa.

Luozhu Feng, Mengxin Xu, Weiliang Zeng, Xiaodong Zhang, Sipei Wang, Zhuocheng Yao, Tieli Zhou, Shiyi Shi, Jianming Cao, Lijiang Chen
Author Information
  1. Luozhu Feng: Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
  2. Mengxin Xu: Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
  3. Weiliang Zeng: Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
  4. Xiaodong Zhang: Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
  5. Sipei Wang: Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
  6. Zhuocheng Yao: Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
  7. Tieli Zhou: Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
  8. Shiyi Shi: Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
  9. Jianming Cao: Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China. wzcjming@163.com.
  10. Lijiang Chen: Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China. 29340442@qq.com.

Abstract

BACKGROUND: Pseudomonas aeruginosa (P. aeruginosa) has been majorly implicated in the infection of burns, wounds, skin, and respiratory tract. Colistin is considered the last line of defense against P. aeruginosa infections. However, colistin is becoming increasingly invalid in treating patients infected with colistin-resistant (COL-R) P. aeruginosa. As one of the disinfectants used for wound infections, acetic acid (AA) offers good antibacterial and antibiofilm activities against P. aeruginosa. This study investigated the effects of AA on COL-R P. aeruginosa in terms of its antibacterial, antibiofilm, and anti-virulence properties and the corresponding underlying mechanisms.
RESULTS: The antimicrobial susceptibility and growth curve data revealed that 0.078% (v/v) AA exhibited good antibacterial activity against COL-R P. aeruginosa. Subinhibitory concentrations of AA were ineffective in inhibiting biofilm formation, but 4��������and 8��������of the minimum inhibitory concentration (MIC) was effective in removing the preformed biofilms in biofilm-eradication assays. The virulence results illustrated that AA inhibited COL-R P. aeruginosa swimming, swarming, twitching, and pyocyanin and elastase production. The analysis of the potential antibacterial mechanisms of AA on COL-R P. aeruginosa revealed that AA acted by increasing the outer and inner membrane permeability, polarizing the membrane potential, and decreasing the reduction potential in a concentration-dependent manner. The qRT-PCR results revealed that AA may inhibit the virulence of COL-R P. aeruginosa by inhibiting the expression of T3SS-related and QS-related genes.
CONCLUSIONS: AA possesses antibacterial, antibiofilm, and anti-virulence properties that ultimately lead to the alteration of the bacterial membrane permeability, membrane potential, and reduction potential. Our findings indicated that AA is presently one of the effective treatment options for infections. A high concentration of AA (>���0.156% v/v) can be used to sterilize biofilm-prone surgical instruments, for hospital disinfection, and for treating the external wound, whereas a low concentration of AA (0.00975-0.039% v/v) may be used as an anti-virulence agent for adjuvant treatment of COL-R P. aeruginosa, thereby further improving the application value of AA in the treatment of infections.

Keywords

References

  1. Mol Pharm. 2019 Aug 5;16(8):3399-3413 [PMID: 31260316]
  2. Microb Pathog. 2018 Aug;121:190-197 [PMID: 29807134]
  3. Dermatol Ther. 2019 May;32(3):e12883 [PMID: 30920153]
  4. Molecules. 2010 Feb 03;15(2):780-92 [PMID: 20335945]
  5. BMC Complement Altern Med. 2018 Jun 15;18(1):185 [PMID: 29903005]
  6. Commun Biol. 2022 Aug 25;5(1):871 [PMID: 36008485]
  7. Front Microbiol. 2019 Mar 21;10:560 [PMID: 30949153]
  8. Adv Wound Care (New Rochelle). 2015 Jul 1;4(7):363-372 [PMID: 26155378]
  9. mBio. 2014 Feb 25;5(2):e00013-14 [PMID: 24570366]
  10. Appl Microbiol Biotechnol. 2019 Jan;103(2):903-915 [PMID: 30421108]
  11. Biomedicines. 2022 Jul 31;10(8): [PMID: 36009394]
  12. Appl Microbiol Biotechnol. 2020 Jan;104(1):33-49 [PMID: 31768614]
  13. AMA Am J Dis Child. 1952 May;83(5):637-41 [PMID: 14914162]
  14. Proc Biol Sci. 2020 Oct 28;287(1937):20202272 [PMID: 33081616]
  15. mBio. 2021 Oct 26;12(5):e0180121 [PMID: 34634935]
  16. J R Army Med Corps. 1993 Jun;139(2):49-51 [PMID: 8355236]
  17. Int Wound J. 2016 Dec;13(6):1129-1136 [PMID: 25851059]
  18. Med Microbiol Immunol. 2013 Apr;202(2):131-41 [PMID: 23007678]
  19. Virulence. 2020 Dec;11(1):652-668 [PMID: 32423284]
  20. BMC Microbiol. 2020 Jul 9;20(1):203 [PMID: 32646366]
  21. J Hosp Infect. 1997 Jul;36(3):243-4 [PMID: 9253707]
  22. Appl Environ Microbiol. 2000 May;66(5):2001-5 [PMID: 10788373]
  23. Infect Drug Resist. 2022 Aug 04;15:4213-4227 [PMID: 35959145]
  24. Am Fam Physician. 2012 Dec 1;86(11):1055-61 [PMID: 23198673]
  25. Am J Respir Crit Care Med. 2018 Mar 15;197(6):708-727 [PMID: 29087211]
  26. Biomolecules. 2020 Dec 02;10(12): [PMID: 33276611]
  27. Drug Discov Today. 2021 Sep;26(9):2108-2123 [PMID: 33676022]
  28. Food Funct. 2020 Jul 1;11(7):6496-6508 [PMID: 32697213]
  29. Methods Mol Biol. 2011;740:27-32 [PMID: 21468965]
  30. J Biophotonics. 2018 Nov;11(11):e201800079 [PMID: 29952074]
  31. PLoS Pathog. 2020 Oct 30;16(10):e1008529 [PMID: 33125434]
  32. Antimicrob Agents Chemother. 2008 Oct;52(10):3648-63 [PMID: 18644954]
  33. J Antibiot (Tokyo). 2021 Dec;74(12):863-873 [PMID: 34480092]
  34. Molecules. 2022 Jan 20;27(3): [PMID: 35163919]
  35. Int J Mol Sci. 2021 Mar 18;22(6): [PMID: 33803907]
  36. APMIS. 2020 Jun;128(6):445-450 [PMID: 32277844]
  37. Microbes Environ. 2013;28(1):13-24 [PMID: 23363620]
  38. Br Med J. 1972 Dec 30;4(5843):761-4 [PMID: 4566994]
  39. Infect Drug Resist. 2020 Feb 03;13:323-332 [PMID: 32099423]
  40. FEMS Microbiol Rev. 2014 Nov;38(6):1091-125 [PMID: 24898062]
  41. Antimicrob Agents Chemother. 2006 May;50(5):1633-41 [PMID: 16641429]
  42. Oxid Med Cell Longev. 2022 Mar 29;2022:2371807 [PMID: 35480866]
  43. Trends Mol Med. 2004 Dec;10(12):599-606 [PMID: 15567330]
  44. J Bacteriol. 2000 Nov;182(21):5990-6 [PMID: 11029417]
  45. Int J Antimicrob Agents. 2022 Jul;60(1):106605 [PMID: 35577258]
  46. Arch Microbiol. 2022 Feb 2;204(2):157 [PMID: 35106661]
  47. Infect Drug Resist. 2020 Oct 08;13:3501-3511 [PMID: 33116669]
  48. PLoS One. 2017 Apr 28;12(4):e0176883 [PMID: 28453568]
  49. J Bacteriol. 1946 Sep;52:353-6 [PMID: 20998726]
  50. ScientificWorldJournal. 2014 Jan 28;2014:826219 [PMID: 24616649]
  51. Microbiol Spectr. 2022 Aug 31;10(4):e0018422 [PMID: 35700133]
  52. J Antimicrob Chemother. 2020 Jan 1;75(1):110-116 [PMID: 31580426]

Grants

  1. Y20170204/the Planned Science and Technology Project of Wenzhou

MeSH Term

Humans
Pseudomonas aeruginosa
Colistin
Acetic Acid
Anti-Bacterial Agents
Biofilms
Microbial Sensitivity Tests
Quorum Sensing
Pseudomonas Infections

Chemicals

Colistin
Acetic Acid
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0aeruginosaAAPCOL-Rantibacterialpotentialinfectionsantibiofilmanti-virulencemembraneusedacidmechanismsrevealedv/vconcentrationtreatmentPseudomonastreatingcolistin-resistantonewoundaceticgoodeffectsproperties0inhibitingeffectivevirulenceresultspermeabilityreductionmayBACKGROUND:majorlyimplicatedinfectionburnswoundsskinrespiratorytractColistinconsideredlastlinedefenseHowevercolistinbecomingincreasinglyinvalidpatientsinfecteddisinfectantsoffersactivitiesstudyinvestigatedtermscorrespondingunderlyingRESULTS:antimicrobialsusceptibilitygrowthcurvedata078%exhibitedactivitySubinhibitoryconcentrationsineffectivebiofilmformation4��������and8��������ofminimuminhibitoryMICremovingpreformedbiofilmsbiofilm-eradicationassaysillustratedinhibitedswimmingswarmingtwitchingpyocyaninelastaseproductionanalysisactedincreasingouterinnerpolarizingdecreasingconcentration-dependentmannerqRT-PCRinhibitexpressionT3SS-relatedQS-relatedgenesCONCLUSIONS:possessesultimatelyleadalterationbacterialfindingsindicatedpresentlyoptionshigh>���0156%cansterilizebiofilm-pronesurgicalinstrumentshospitaldisinfectionexternalwhereaslow00975-0039%agentadjuvanttherebyimprovingapplicationvalueEvaluationrelatedAceticAntibacterialAntibiofilmAntivirulenceColistin-resistantMechanisms

Similar Articles

Cited By