Full-length transcriptome sequencing and comparative transcriptome analysis of in response to infection by the microsporidian .

Libo Hou, Mengdi Wang, Lei Zhu, Mingxiao Ning, Jingxiu Bi, Jie Du, Xianghui Kong, Wei Gu, Qingguo Meng
Author Information
  1. Libo Hou: Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China.
  2. Mengdi Wang: Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China.
  3. Lei Zhu: Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China.
  4. Mingxiao Ning: Institution of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Science, Jinan, Shandong, China.
  5. Jingxiu Bi: Institution of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Science, Jinan, Shandong, China.
  6. Jie Du: Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China.
  7. Xianghui Kong: Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China.
  8. Wei Gu: Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China.
  9. Qingguo Meng: Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China.

Abstract

As a new generation of high-throughput sequencing technology, PacBio Iso-Seq technology (Iso-Seq) provides a better alternative sequencing method for the acquisition of full-length unigenes. In this study, a total of 22.27 gigabyte (Gb) subread bases and 128,614 non-redundant unigenes (mean length: 2,324 bp) were obtained from six main tissues of including the heart, nerve, intestine, muscle, gills and hepatopancreas. In addition, 74,732 unigenes were mapped to at least one of the following databases: Non-Redundant Protein Sequence Database (NR), Gene Ontology (GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG), KEGG Orthology (KO) and Protein family (Pfam). In addition, 6696 transcription factors (TFs), 28,458 long non-coding RNAs (lncRNAs) and 94,230 mRNA-miRNA pairs were identified. is the primary pathogen of and can cause hepatopancreatic necrosis disease (HPND); the intestine is the main target tissue. Here, we attempted to identify the key genes related to infection in the intestines of . By combining Iso-Seq and Illumina RNA-seq analysis, we identified a total of 12,708 differentially expressed unigenes (DEUs; 6,696 upregulated and 6,012 downregulated) in the crab intestine following infection with . Based on the biological analysis of these DEUs, several key processes were identified, including energy metabolism-related pathways, cell apoptosis and innate immune-related pathways. Twelve selected genes from these DEUs were subsequently verified by quantitative real-time PCR (qRT-PCR) analysis. Our findings enhance our understanding of the transcriptome and the specific association between and infection.

Keywords

References

  1. Fish Shellfish Immunol. 2019 Apr;87:346-359 [PMID: 30677515]
  2. BMC Genomics. 2015 Dec 09;16:1039 [PMID: 26645802]
  3. J Biol Chem. 2019 Nov 1;294(44):16440-16450 [PMID: 31537644]
  4. J Fish Dis. 2021 Mar;44(3):305-313 [PMID: 33105037]
  5. Sci Rep. 2019 Aug 27;9(1):12401 [PMID: 31455827]
  6. PLoS Genet. 2006 Nov 10;2(11):e183 [PMID: 17096597]
  7. BMC Plant Biol. 2019 Jan 21;19(1):32 [PMID: 30665358]
  8. Immunol Rev. 2004 Apr;198:116-26 [PMID: 15199959]
  9. Cell Death Dis. 2016 Feb 04;7:e2083 [PMID: 26844698]
  10. Fish Shellfish Immunol. 2022 Sep;128:582-591 [PMID: 35964876]
  11. PLoS One. 2013 Jul 17;8(7):e68233 [PMID: 23874555]
  12. Fish Shellfish Immunol. 2018 Jan;72:443-451 [PMID: 29146449]
  13. J Exp Med. 1996 Mar 1;183(3):991-9 [PMID: 8642302]
  14. Fish Shellfish Immunol. 2012 Feb;32(2):345-52 [PMID: 22166732]
  15. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):580-5 [PMID: 9892676]
  16. Sci Rep. 2019 Feb 25;9(1):2709 [PMID: 30804390]
  17. Plant J. 2019 Jan;97(2):296-305 [PMID: 30288819]
  18. Fish Shellfish Immunol. 2017 Nov;70:710-719 [PMID: 28943297]
  19. PLoS Biol. 2004 Nov;2(11):e363 [PMID: 15502875]
  20. Fish Shellfish Immunol. 2016 Oct;57:17-24 [PMID: 27531577]
  21. Toxicol Pathol. 2007 Jun;35(4):495-516 [PMID: 17562483]
  22. BMC Genomics. 2013 Oct 01;14:670 [PMID: 24083400]
  23. PLoS One. 2019 Jun 4;14(6):e0217593 [PMID: 31163077]
  24. Fish Shellfish Immunol. 2015 Mar;43(1):219-29 [PMID: 25573502]
  25. J Biol Chem. 2012 Mar 23;287(13):10060-10069 [PMID: 22235126]
  26. J Invertebr Pathol. 2007 Feb;94(2):77-83 [PMID: 17097104]
  27. Int J Parasitol. 2001 Sep;31(11):1166-76 [PMID: 11563357]
  28. Curr Opin Plant Biol. 2015 Apr;24:71-81 [PMID: 25703261]
  29. Sci Rep. 2015 Sep 15;5:14015 [PMID: 26369734]
  30. Nucleic Acids Res. 2010 Nov;38(21):e194 [PMID: 20846956]
  31. Fish Shellfish Immunol. 2020 Nov;106:866-875 [PMID: 32889097]
  32. BMC Genomics. 2019 Jun 6;20(1):456 [PMID: 31170917]
  33. Curr Opin Immunol. 1998 Feb;10(1):23-8 [PMID: 9523106]
  34. Vet Immunol Immunopathol. 2009 Mar 15;128(1-3):110-8 [PMID: 19070907]
  35. J Invertebr Pathol. 2011 Nov;108(3):156-66 [PMID: 21854783]
  36. Nat Rev Genet. 2011 Feb;12(2):99-110 [PMID: 21245828]
  37. J Fish Dis. 2017 Jul;40(7):919-927 [PMID: 27859349]
  38. Sci Rep. 2018 Nov 16;8(1):16920 [PMID: 30446694]
  39. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  40. Front Genet. 2020 Feb 18;11:71 [PMID: 32133029]
  41. Cell Death Differ. 2006 Sep;13(9):1423-33 [PMID: 16676004]
  42. DNA Res. 2018 Aug 1;25(4):421-437 [PMID: 29850846]
  43. J Fish Dis. 2016 Sep;39(9):1043-51 [PMID: 26850704]
  44. Environ Microbiol. 2017 May;19(5):2077-2089 [PMID: 28345194]
  45. Microbes Infect. 2000 Nov;2(14):1705-19 [PMID: 11137044]
  46. Cell Microbiol. 2002 May;4(5):305-14 [PMID: 12027958]
  47. Gigascience. 2017 Nov 1;6(11):1-13 [PMID: 29048540]
  48. Parasitology. 2005 Mar;130(Pt 3):285-92 [PMID: 15796011]

MeSH Term

Animals
Brachyura
Transcriptome
Gene Expression Profiling
Microsporidia

Word Cloud

Created with Highcharts 10.0.0sequencingunigenesintestineinfectionanalysistechnologyIso-SeqidentifiedDEUstranscriptometotalmainincludingadditionfollowingProteinKEGGhepatopancreaticnecrosisdiseasekeygenes6pathwaysmicrosporidiannewgenerationhigh-throughputPacBioprovidesbetteralternativemethodacquisitionfull-lengthstudy2227gigabyteGbsubreadbases128614non-redundantmeanlength:2324bpobtainedsixtissuesheartnervemusclegillshepatopancreas74732mappedleastonedatabases:Non-RedundantSequenceDatabaseNRGeneOntologyGOKyotoEncyclopaediaGenesGenomesOrthologyKOfamilyPfam6696transcriptionfactorsTFs28458longnon-codingRNAslncRNAs94230mRNA-miRNApairsprimarypathogencancauseHPNDtargettissueattemptedidentifyrelatedintestinescombiningIlluminaRNA-seq12708differentiallyexpressed696upregulated012downregulatedcrabBasedbiologicalseveralprocessesenergymetabolism-relatedcellapoptosisinnateimmune-relatedTwelveselectedsubsequentlyverifiedquantitativereal-timePCRqRT-PCRfindingsenhanceunderstandingspecificassociationFull-lengthcomparativeresponseEriocheirsinensisthird-generation

Similar Articles

Cited By