Generating mobility networks with generative adversarial networks.

Giovanni Mauro, Massimiliano Luca, Antonio Longa, Bruno Lepri, Luca Pappalardo
Author Information
  1. Giovanni Mauro: Institute of Information Science and Technologies, National Research Council (ISTI-CNR), Pisa, Italy.
  2. Massimiliano Luca: Free University of Bolzano, Bolzano, Italy.
  3. Antonio Longa: University of Trento, Trento, Italy.
  4. Bruno Lepri: Fondazione Bruno Kessler, Trento, Italy.
  5. Luca Pappalardo: Institute of Information Science and Technologies, National Research Council (ISTI-CNR), Pisa, Italy.

Abstract

The increasingly crucial role of human displacements in complex societal phenomena, such as traffic congestion, segregation, and the diffusion of epidemics, is attracting the interest of scientists from several disciplines. In this article, we address mobility network generation, i.e., generating a city's entire mobility network, a weighted directed graph in which nodes are geographic locations and weighted edges represent people's movements between those locations, thus describing the entire mobility set flows within a city. Our solution is MoGAN, a model based on Generative Adversarial Networks (GANs) to generate realistic mobility networks. We conduct extensive experiments on public datasets of bike and taxi rides to show that MoGAN outperforms the classical Gravity and Radiation models regarding the realism of the generated networks. Our model can be used for data augmentation and performing simulations and what-if analysis.

Keywords

References

  1. Sci Data. 2020 Jul 8;7(1):230 [PMID: 32641758]
  2. Sci Rep. 2019 Nov 26;9(1):17557 [PMID: 31772246]
  3. Sci Rep. 2021 Dec 27;11(1):24452 [PMID: 34961773]
  4. J R Soc Interface. 2013 May 08;10(84):20130246 [PMID: 23658117]
  5. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):022812 [PMID: 24032888]
  6. IEEE Trans Neural Netw. 2009 Jan;20(1):61-80 [PMID: 19068426]
  7. EPJ Data Sci. 2022;11(1):22 [PMID: 35402140]
  8. Data Min Knowl Discov. 2018;32(3):787-829 [PMID: 31258383]
  9. Sci Adv. 2020 Jun 05;6(23):eabc0764 [PMID: 32548274]
  10. Nat Commun. 2017 Nov 21;8(1):1639 [PMID: 29158475]
  11. Sci Rep. 2018 Mar 23;8(1):5134 [PMID: 29572479]
  12. PLoS One. 2018 Jul 6;13(7):e0199892 [PMID: 29979731]
  13. Science. 2020 Sep 18;369(6510):1465-1470 [PMID: 32680881]
  14. Science. 2020 May 1;368(6490):493-497 [PMID: 32213647]
  15. Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5370-8 [PMID: 27573826]
  16. Nat Commun. 2021 Nov 12;12(1):6576 [PMID: 34772925]
  17. J Travel Med. 2019 May 10;26(3): [PMID: 30869148]
  18. Nature. 2012 Feb 26;484(7392):96-100 [PMID: 22367540]

Word Cloud

Created with Highcharts 10.0.0mobilitynetworksnetworkgenerationentireweightedlocationsMoGANmodelGANsincreasinglycrucialrolehumandisplacementscomplexsocietalphenomenatrafficcongestionsegregationdiffusionepidemicsattractinginterestscientistsseveraldisciplinesarticleaddressiegeneratingcity'sdirectedgraphnodesgeographicedgesrepresentpeople'smovementsthusdescribingsetflowswithincitysolutionbasedGenerativeAdversarialNetworksgeneraterealisticconductextensiveexperimentspublicdatasetsbiketaxiridesshowoutperformsclassicalGravityRadiationmodelsregardingrealismgeneratedcanuseddataaugmentationperformingsimulationswhat-ifanalysisGeneratinggenerativeadversarialArtificialintelligenceFlowHuman

Similar Articles

Cited By (2)