Exercise alleviates diabetic complications by inhibiting oxidative stress-mediated signaling cascade and mitochondrial metabolic stress in GK diabetic rat tissues.

Annie John, Frank Christopher Howarth, Haider Raza
Author Information
  1. Annie John: Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
  2. Frank Christopher Howarth: Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
  3. Haider Raza: Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.

Abstract

Type 2 diabetes, obesity (referred to as "diabesity"), and metabolic syndrome associated with increased insulin resistance and/or decreased insulin sensitivity have been implicated with increased oxidative stress and inflammation, mitochondrial dysfunction, and alterations in energy metabolism. The precise molecular mechanisms of these complications, however, remain to be clarified. Owing to the limitations and off-target side effects of antidiabetic drugs, exercise-induced control of hyperglycemia and increased insulin sensitivity is a preferred strategy to manage "diabesity" associated complications. In this study, we have investigated the effects of moderate exercise (1 h/day, 5 days a week for 60 days) on mitochondrial, metabolic, and oxidative stress-related changes in the liver and kidney of type 2 diabetic Goto-Kakizaki (GK) rats. Our previous study, using the same exercise regimen, demonstrated improved energy metabolism and mitochondrial function in the pancreas of GK diabetic rats. Our current study demonstrates exercise-induced inhibition of ROS production and NADPH oxidase enzyme activity, as well as lipid peroxidation and protein carbonylation in the liver and kidney of GK rats. Interestingly, glutathione (GSH) content and GSH-peroxidase and GSH reductase enzymes as well as superoxide dismutase (SOD) activities were profoundly altered in diabetic rat tissues. Exercise helped in restoring the altered GSH metabolism and antioxidant homeostasis. An increase in cytosolic glycolytic enzyme, hexokinase, and a decrease in mitochondrial Kreb's cycle enzyme was observed in GK diabetic rat tissues. Exercise helped restore the altered energy metabolism. A significant decrease in the activities of mitochondrial complexes and ATP content was also observed in the GK rats and exercise regulated the activities of the respiratory complexes and improved energy utilization. Activation of cytochrome P450s, CYP 2E1, and CYP 3A4 was observed in the tissues of GK rats, which recovered after exercise. Altered expression of redox-responsive proteins and translocation of transcription factor NFκB-p65, accompanied by activation of AMP-activated protein kinase (AMPK), SIRT-1, Glut-4, and PPAR-γ suggests the induction of antioxidant defense responses and increased energy metabolism in GK diabetic rats after exercise.

Keywords

References

  1. Front Physiol. 2022 Aug 25;13:970292 [PMID: 36203933]
  2. Pflugers Arch. 2020 Feb;472(2):137-153 [PMID: 30707289]
  3. Exp Diabetes Res. 2011;2011:908185 [PMID: 21949662]
  4. Genes Cells. 2008 Nov;13(11):1159-70 [PMID: 19090810]
  5. PLoS One. 2015 Mar 19;10(3):e0118436 [PMID: 25790445]
  6. Cell Commun Signal. 2021 May 25;19(1):61 [PMID: 34034759]
  7. Diabetes. 2004 Jan;53(1):185-94 [PMID: 14693714]
  8. Am J Physiol Renal Physiol. 2009 Apr;296(4):F700-8 [PMID: 19144689]
  9. Fundam Clin Pharmacol. 2021 Oct;35(5):808-821 [PMID: 33675090]
  10. World J Diabetes. 2021 Sep 15;12(9):1401-1425 [PMID: 34630897]
  11. Eur J Sport Sci. 2019 Aug;19(7):994-1003 [PMID: 30732555]
  12. Biotechnology. 1992;24:145-9 [PMID: 1422008]
  13. Biology (Basel). 2017 Feb 08;6(1): [PMID: 28208702]
  14. Nature. 1970 Aug 15;227(5259):680-5 [PMID: 5432063]
  15. J Nutr Biochem. 2012 Dec;23(12):1583-91 [PMID: 22444871]
  16. Aging Dis. 2019 Jun 01;10(3):637-651 [PMID: 31165007]
  17. Mol Cell Biochem. 2013 Aug;380(1-2):83-96 [PMID: 23620341]
  18. Int J Mol Sci. 2012 Nov 30;13(12):16241-54 [PMID: 23203193]
  19. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  20. Life Sci. 2019 Nov 1;236:116836 [PMID: 31493479]
  21. Nat Rev Mol Cell Biol. 2022 Jan;23(1):56-73 [PMID: 34518687]
  22. Cell Physiol Biochem. 2015;36(5):1939-50 [PMID: 26202354]
  23. Biomed Rep. 2020 May;12(5):222-232 [PMID: 32257185]
  24. Nutr Metab (Lond). 2019 Apr 02;16:22 [PMID: 30988688]
  25. J Diabetes Res. 2018 Mar 29;2018:6170352 [PMID: 29785400]
  26. Pharmacol Rep. 2009 Jul-Aug;61(4):595-603 [PMID: 19815941]
  27. Cell Physiol Biochem. 2015;35(3):1241-51 [PMID: 25766534]
  28. Methods Cell Biol. 2001;65:97-117 [PMID: 11381612]
  29. Nature. 2009 Apr 23;458(7241):1056-60 [PMID: 19262508]
  30. Physiol Rep. 2016 Apr;4(8): [PMID: 27095835]
  31. Cell Physiol Biochem. 2013;32(6):1610-20 [PMID: 24335379]
  32. Scand J Med Sci Sports. 2002 Jun;12(3):163-70 [PMID: 12135449]
  33. Biochim Biophys Acta Mol Cell Res. 2018 May;1865(5):721-733 [PMID: 29499228]
  34. Antioxidants (Basel). 2021 Nov 03;10(11): [PMID: 34829625]
  35. Life (Basel). 2021 Aug 30;11(9): [PMID: 34575050]
  36. Med Sci Monit. 2018 Dec 14;24:9081-9089 [PMID: 30551123]
  37. Int J Mol Sci. 2020 May 29;21(11): [PMID: 32485811]
  38. Exp Diabetes Res. 2012;2012:941868 [PMID: 22007193]
  39. Free Radic Biol Med. 2011 Apr 1;50(7):794-800 [PMID: 21185935]
  40. Int J Mol Sci. 2011;12(5):3133-47 [PMID: 21686174]
  41. Physiology (Bethesda). 2022 May 1;37(3):115-127 [PMID: 34779282]
  42. Eur J Pharmacol. 2022 Oct 15;932:175208 [PMID: 35981603]
  43. Diabetes Res Clin Pract. 2022 Jan;183:109119 [PMID: 34879977]
  44. Life (Basel). 2022 Jan 12;12(1): [PMID: 35054496]
  45. Diabetes. 2004 Feb;53 Suppl 1:S60-5 [PMID: 14749267]
  46. Methods Mol Biol. 2019;1916:203-211 [PMID: 30535697]
  47. Life Sci. 2015 May 1;128:64-71 [PMID: 25744399]
  48. Einstein (Sao Paulo). 2014 Jan-Mar;12(1):82-9 [PMID: 24728251]
  49. J Clin Invest. 2013 Jul;123(7):2764-72 [PMID: 23863634]
  50. Diabetes Care. 2011 Jan;34(1):162-7 [PMID: 20929994]

Word Cloud

Created with Highcharts 10.0.0GKdiabeticmitochondrialenergymetabolismexerciseratstissuesincreasedrat2metabolicinsulinoxidativecomplicationsstudyenzymeGSHactivitiesalteredExerciseobserveddiabetes"diabesity"associatedsensitivitystresseffectsexercise-inducedliverkidneytypeimprovedROSwellproteincontenthelpedantioxidantdecreasecomplexesCYPTypeobesityreferredsyndromeresistanceand/ordecreasedimplicatedinflammationdysfunctionalterationsprecisemolecularmechanismshoweverremainclarifiedOwinglimitationsoff-targetsideantidiabeticdrugscontrolhyperglycemiapreferredstrategymanageinvestigatedmoderate1 h/day5 daysweek60 daysstress-relatedchangesGoto-KakizakiprevioususingregimendemonstratedfunctionpancreascurrentdemonstratesinhibitionproductionNADPHoxidaseactivitylipidperoxidationcarbonylationInterestinglyglutathioneGSH-peroxidasereductaseenzymessuperoxidedismutaseSODprofoundlyrestoringhomeostasisincreasecytosolicglycolytichexokinaseKreb'scyclerestoresignificantATPalsoregulatedrespiratoryutilizationActivationcytochromeP450s2E13A4recoveredAlteredexpressionredox-responsiveproteinstranslocationtranscriptionfactorNFκB-p65accompaniedactivationAMP-activatedkinaseAMPKSIRT-1Glut-4PPAR-γsuggestsinductiondefenseresponsesalleviatesinhibitingstress-mediatedsignalingcascademitochondria

Similar Articles

Cited By (7)