Mutation-driven evolution of antibacterial function in an ancestral antifungal scaffold: Significance for peptide engineering.

Jing Gu, Noriyoshi Isozumi, Bin Gao, Shinya Ohki, Shunyi Zhu
Author Information
  1. Jing Gu: Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
  2. Noriyoshi Isozumi: Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa, Japan.
  3. Bin Gao: Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
  4. Shinya Ohki: Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa, Japan.
  5. Shunyi Zhu: Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Abstract

Mutation-driven evolution of novel function on an old gene has been documented in many development- and adaptive immunity-related genes but is poorly understood in immune effector molecules. Drosomycin-type antifungal peptides (DTAFPs) are a family of defensin-type effectors found in plants and ecdysozoans. Their primitive function was to control fungal infection and then co-opted for fighting against bacterial infection in plants, insects, and nematodes. This provides a model to study the structural and evolutionary mechanisms behind such functional diversification. In the present study, we determined the solution structure of mehamycin, a DTAFP from the Northern root-knot nematode with antibacterial activity and an 18-mer insert, and studied the mutational effect through using a mutant with the insert deleted. Mehamycin adopts an expected cysteine-stabilized α-helix and β-sheet fold in its core scaffold and the inserted region, called single Disulfide Bridge-linked Domain (abbreviated as sDBD), forms an extended loop protruding from the scaffold. The latter folds into an amphipathic architecture stabilized by one disulfide bridge, which likely confers mehamycin a bacterial membrane permeability. Deletion of the sDBD remarkably decreased the ability but accompanying an increase in thermostability, indicative of a structure-function trade-off in the mehamycin evolution. Allosteric analysis revealed an interior interaction between the two domains, which might promote point mutations at some key sites of the core domain and ultimately give rise to the emergence of antibacterial function. Our work may be valuable in guiding protein engineering of mehamycin to improve its activity and stability.

Keywords

References

  1. Mol Cell Proteomics. 2012 Jan;11(1):M111.012054 [PMID: 21969612]
  2. PLoS Comput Biol. 2008 Feb 29;4(2):e1000002 [PMID: 18463696]
  3. J Biol Chem. 1994 Dec 30;269(52):33159-63 [PMID: 7806546]
  4. Protein Expr Purif. 1997 Jun;10(1):123-31 [PMID: 9179299]
  5. J Biomed Biotechnol. 2009;2009:315423 [PMID: 19888430]
  6. Insect Biochem Mol Biol. 1999 Nov;29(11):965-72 [PMID: 10560137]
  7. Nat Rev Microbiol. 2005 Mar;3(3):238-50 [PMID: 15703760]
  8. Bioessays. 1999 May;21(5):432-9 [PMID: 10376014]
  9. Cell Mol Life Sci. 2005 Oct;62(19-20):2257-69 [PMID: 16143827]
  10. Immunol Rev. 2004 Apr;198:169-84 [PMID: 15199962]
  11. Protein Eng Des Sel. 2016 Dec;29(12):607-616 [PMID: 27672050]
  12. Nature. 2008 Sep 4;455(7209):105-8 [PMID: 18641631]
  13. Front Cell Infect Microbiol. 2017 Apr 27;7:144 [PMID: 28497029]
  14. IUBMB Life. 2003 Apr-May;55(4-5):257-65 [PMID: 12880207]
  15. Adv Exp Med Biol. 2019;1117:3-6 [PMID: 30980349]
  16. Dev Comp Immunol. 2012 Mar;36(3):502-20 [PMID: 21978453]
  17. Trends Biotechnol. 2011 Sep;29(9):464-72 [PMID: 21680034]
  18. Immunogenetics. 2019 Jan;71(1):61-69 [PMID: 30280251]
  19. Nucleic Acids Res. 2021 Jul 2;49(W1):W551-W558 [PMID: 33978752]
  20. Nat Biotechnol. 2013 May;31(5):379-82 [PMID: 23657384]
  21. Insect Mol Biol. 2009 Oct;18(5):549-56 [PMID: 19754735]
  22. Mol Immunol. 2008 Feb;45(3):828-38 [PMID: 17675235]
  23. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):452-6 [PMID: 7831309]
  24. J Am Chem Soc. 2006 Oct 11;128(40):13112-22 [PMID: 17017791]
  25. J Mol Graph. 1996 Feb;14(1):51-5, 29-32 [PMID: 8744573]
  26. Mol Biol Evol. 2021 Oct 27;38(11):5175-5189 [PMID: 34320203]
  27. Protein Sci. 1997 Sep;6(9):1878-84 [PMID: 9300487]
  28. Front Microbiol. 2014 Mar 20;5:97 [PMID: 24688483]
  29. J Biomol NMR. 1995 Nov;6(3):277-93 [PMID: 8520220]
  30. Nat Commun. 2014;5:3154 [PMID: 24434635]
  31. Mol Biol Evol. 2020 Nov 1;37(11):3149-3164 [PMID: 32556211]
  32. Mol Biol Evol. 2016 Sep;33(9):2345-56 [PMID: 27297472]
  33. FASEB J. 2016 Jul;30(7):2602-14 [PMID: 27084888]
  34. Mol Biol Evol. 2011 Jan;28(1):291-301 [PMID: 20671041]
  35. Dev Comp Immunol. 2013 Jan-Feb;39(1-2):79-84 [PMID: 22369779]
  36. Nature. 2005 Oct 13;437(7061):975-80 [PMID: 16222292]
  37. Curr Pharm Des. 2011 Dec;17(38):4270-93 [PMID: 22204427]
  38. Trends Biotechnol. 2009 Oct;27(10):582-90 [PMID: 19683819]
  39. Biochem Biophys Res Commun. 2009 Sep 18;387(2):393-8 [PMID: 19615342]
  40. Dev Comp Immunol. 2010 Sep;34(9):953-8 [PMID: 20420852]
  41. Lancet Infect Dis. 2020 Sep;20(9):e216-e230 [PMID: 32653070]
  42. EMBO Mol Med. 2022 Feb 7;14(2):e14499 [PMID: 34927385]
  43. Biochimie. 2013 Sep;95(9):1732-40 [PMID: 23743216]
  44. Trends Immunol. 2014 Sep;35(9):443-50 [PMID: 25113635]
  45. Nature. 2002 Jan 24;415(6870):389-95 [PMID: 11807545]
  46. Insect Mol Biol. 2008 Aug;17(4):405-11 [PMID: 18651922]
  47. J Magn Reson. 2003 Jan;160(1):65-73 [PMID: 12565051]
  48. Mol Immunol. 2008 Sep;45(15):3909-16 [PMID: 18657321]
  49. Biochem Pharmacol. 2010 Oct 15;80(8):1296-302 [PMID: 20637738]
  50. Sci Rep. 2016 Aug 26;6:32175 [PMID: 27562645]
  51. FASEB J. 2009 Apr;23(4):1230-45 [PMID: 19088182]
  52. J Biol Chem. 2009 Aug 28;284(35):23558-63 [PMID: 19574227]
  53. Nat Rev Immunol. 2003 Sep;3(9):710-20 [PMID: 12949495]
  54. Dev Comp Immunol. 2018 Oct;87:90-97 [PMID: 29894713]

Word Cloud

Created with Highcharts 10.0.0mehamycinfunctionevolutionantibacterialMutation-drivenantifungalplantsinfectionbacterialstudyfunctionaldiversificationnematodeactivityinsertmutantcorescaffoldsDBDmembranepermeabilityengineeringnoveloldgenedocumentedmanydevelopment-adaptiveimmunity-relatedgenespoorlyunderstoodimmuneeffectormoleculesDrosomycin-typepeptidesDTAFPsfamilydefensin-typeeffectorsfoundecdysozoansprimitivecontrolfungalco-optedfightinginsectsnematodesprovidesmodelstructuralevolutionarymechanismsbehindpresentdeterminedsolutionstructureDTAFPNorthernroot-knot18-merstudiedmutationaleffectusingdeletedMehamycinadoptsexpectedcysteine-stabilizedα-helixβ-sheetfoldinsertedregioncalledsingleDisulfideBridge-linkedDomainabbreviatedformsextendedloopprotrudinglatterfoldsamphipathicarchitecturestabilizedonedisulfidebridgelikelyconfersDeletionremarkablydecreasedabilityaccompanyingincreasethermostabilityindicativestructure-functiontrade-offAllostericanalysisrevealedinteriorinteractiontwodomainsmightpromotepointmutationskeysitesdomainultimatelygiveriseemergenceworkmayvaluableguidingproteinimprovestabilityancestralscaffold:Significancepeptideallosteryco-optiondeletiondrosomycin

Similar Articles

Cited By