Pif1 family helicases promote mutation avoidance during DNA replication.

Zhi-Xiong Zhou, Cindy Follonier, Scott A Lujan, Adam B Burkholder, Virginia A Zakian, Thomas A Kunkel
Author Information
  1. Zhi-Xiong Zhou: Genome Integrity & Structural Biology Laboratory, Princeton University, Princeton, NJ 08544, USA.
  2. Cindy Follonier: Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA.
  3. Scott A Lujan: Genome Integrity & Structural Biology Laboratory, Princeton University, Princeton, NJ 08544, USA. ORCID
  4. Adam B Burkholder: Integrative Bioinformatics Support Group, NIH/NIEHS, DHHS, Research Triangle Park, NC 27709, USA.
  5. Virginia A Zakian: Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA.
  6. Thomas A Kunkel: Genome Integrity & Structural Biology Laboratory, Princeton University, Princeton, NJ 08544, USA. ORCID

Abstract

Pif1 family 5' → 3' DNA helicases are important for replication fork progression and genome stability. The budding yeast Saccharomyces cerevisiae encodes two Pif1 family helicases, Rrm3 and Pif1, both of which are multi-functional. Here we describe novel functions for Rrm3 in promoting mutation avoidance during DNA replication. We show that loss of Rrm3 results in elevated spontaneous mutations made by DNA polymerases Pols ϵ and δ, which are subject to DNA mismatch repair. The absence of Rrm3 also causes higher mutagenesis by the fourth B-family DNA polymerase Pol ζ. By genome-wide analysis, we show that the mutational consequences due to loss of Rrm3 vary depending on the genomic locus. Rrm3 promotes the accuracy of DNA replication by Pols ϵ and δ across the genome, and it is particularly important for preventing Pol ζ-dependent mutagenesis at tRNA genes. In addition, mutation avoidance by Rrm3 depends on its helicase activity, and Pif1 serves as a backup for Rrm3 in suppressing mutagenesis. We present evidence that the sole human Pif1 family helicase in human cells likely also promotes replication fidelity, suggesting that a role for Pif1 family helicases in mutation avoidance may be evolutionarily conserved, a possible underlying mechanism for its potential tumor-suppressor function.

References

  1. Cell. 1994 Jan 14;76(1):145-55 [PMID: 8287473]
  2. Bioinformatics. 2009 Jun 15;25(12):1564-5 [PMID: 19369502]
  3. Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17674-9 [PMID: 20876092]
  4. J Biol Chem. 2003 Oct 31;278(44):43770-80 [PMID: 12882968]
  5. Genetics. 1994 Jul;137(3):637-46 [PMID: 8088509]
  6. Nat Struct Mol Biol. 2015 Mar;22(3):185-91 [PMID: 25622295]
  7. Science. 2013 Feb 15;339(6121):823-6 [PMID: 23287722]
  8. Mol Cell Biol. 1989 Oct;9(10):4447-58 [PMID: 2555694]
  9. PLoS Genet. 2016 Dec 6;12(12):e1006451 [PMID: 27923055]
  10. Nucleic Acids Res. 2006 Jun 28;34(11):3259-66 [PMID: 16807316]
  11. Genes Dev. 2006 Nov 15;20(22):3104-16 [PMID: 17114583]
  12. DNA Repair (Amst). 2016 Aug;44:151-158 [PMID: 27233114]
  13. Nat Commun. 2017 Apr 21;8:15025 [PMID: 28429714]
  14. J Bacteriol. 1989 Oct;171(10):5659-67 [PMID: 2676986]
  15. Nucleic Acids Res. 2004 Aug 09;32(14):4205-16 [PMID: 15302919]
  16. Curr Biol. 2006 Jan 24;16(2):202-7 [PMID: 16431373]
  17. Nucleic Acids Res. 2007;35(17):5809-18 [PMID: 17720711]
  18. Nat Struct Mol Biol. 2021 Dec;28(12):1020-1028 [PMID: 34887558]
  19. Genetics. 2020 Apr;214(4):825-838 [PMID: 32071194]
  20. Biochemistry. 1991 Dec 24;30(51):11751-9 [PMID: 1751492]
  21. Mol Cell. 2018 Nov 16;: [PMID: 30451148]
  22. Nucleic Acids Res. 2019 May 7;47(8):3986-3995 [PMID: 30698744]
  23. Cell. 2011 May 27;145(5):678-91 [PMID: 21620135]
  24. Mol Cell. 2019 Apr 18;74(2):231-244.e9 [PMID: 30850330]
  25. Nucleic Acids Res. 2016 May 5;44(8):3811-9 [PMID: 27001517]
  26. Anal Chem. 2015 Sep 1;87(17):8718-23 [PMID: 26249366]
  27. Mutat Res. 2012 Sep 1;737(1-2):34-42 [PMID: 22709919]
  28. Nature. 2013 May 23;497(7450):458-62 [PMID: 23657261]
  29. Cell. 1988 Jun 17;53(6):837-40 [PMID: 2838173]
  30. Genetics. 1997 Nov;147(3):1017-24 [PMID: 9383049]
  31. Mol Cell. 2003 Dec;12(6):1525-36 [PMID: 14690605]
  32. PLoS One. 2012;7(2):e30748 [PMID: 22347400]
  33. Nucleic Acids Res. 1985 Jan 11;13(1):261-74 [PMID: 2987791]
  34. Annu Rev Biochem. 2000;69:497-529 [PMID: 10966467]
  35. Science. 1994 Mar 18;263(5153):1625-9 [PMID: 8128251]
  36. Biometrika. 1947;34(1-2):28-35 [PMID: 20287819]
  37. BMC Genomics. 2018 May 9;19(1):345 [PMID: 29743009]
  38. Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3746-51 [PMID: 11904430]
  39. PLoS Biol. 2011 Feb 15;9(2):e1000594 [PMID: 21347245]
  40. PLoS Genet. 2009 May;5(5):e1000475 [PMID: 19424434]
  41. Genetics. 2001 Sep;159(1):47-64 [PMID: 11560886]
  42. Genes (Basel). 2020 Feb 20;11(2): [PMID: 32093266]
  43. Mol Cell. 2009 Jun 26;34(6):722-34 [PMID: 19560424]
  44. Cell. 2000 Feb 18;100(4):479-89 [PMID: 10693764]
  45. Cell Res. 2008 Jan;18(1):85-98 [PMID: 18157157]
  46. Nucleic Acids Res. 2011 Mar;39(5):1763-73 [PMID: 21036870]
  47. DNA Repair (Amst). 2014 Dec;24:80-86 [PMID: 25303777]
  48. Science. 2007 Jul 6;317(5834):127-30 [PMID: 17615360]
  49. Genome Res. 2014 Nov;24(11):1751-64 [PMID: 25217194]
  50. Genetics. 2019 Jan;211(1):105-119 [PMID: 30442759]
  51. DNA Repair (Amst). 2015 May;29:23-35 [PMID: 25758782]
  52. Curr Genet. 2017 Aug;63(4):621-626 [PMID: 28054200]
  53. J Vis Exp. 2018 Jul 26;(137): [PMID: 30102287]
  54. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160-4 [PMID: 1831267]
  55. J Biol Chem. 2005 Aug 19;280(33):29980-7 [PMID: 15964835]
  56. Elife. 2014 Apr 29;3:e02190 [PMID: 24843019]
  57. Chem Rev. 2006 Feb;106(2):302-23 [PMID: 16464007]
  58. Biochimie. 2009 Sep;91(9):1163-72 [PMID: 19540301]
  59. DNA Repair (Amst). 2010 Mar 2;9(3):237-49 [PMID: 20097624]
  60. Genes Dev. 2002 Jun 1;16(11):1383-96 [PMID: 12050116]
  61. Nature. 2001 Jun 28;411(6841):1073-6 [PMID: 11429610]
  62. Nat Struct Mol Biol. 2017 Feb;24(2):162-170 [PMID: 27991904]
  63. Mol Cell. 2016 Jun 2;62(5):745-55 [PMID: 27259205]
  64. Nucleic Acids Res. 2008 Jun;36(11):3847-56 [PMID: 18503084]
  65. Biochemistry. 2013 Nov 5;52(44):7723-30 [PMID: 24147857]
  66. DNA Repair (Amst). 2014 Dec;24:138-149 [PMID: 24819597]

Grants

  1. R35 GM118279/NIGMS NIH HHS
  2. Z01 ES065070/Intramural NIH HHS

MeSH Term

Humans
Cells, Cultured
Conserved Sequence
DNA Helicases
DNA Replication
Mutation
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins

Chemicals

DNA Helicases
PIF1 protein, human
PIF1 protein, S cerevisiae
Rrm3 protein, S cerevisiae
Saccharomyces cerevisiae Proteins

Word Cloud

Created with Highcharts 10.0.0Pif1DNAfamilyreplicationRrm3helicasesmutationavoidanceRRM3mutagenesisimportantgenomeshowlossPolsϵδalsoPolpromoteshelicasehuman5'3'forkprogressionstabilitybuddingyeastSaccharomycescerevisiaeencodestwomulti-functionaldescribenovelfunctionspromotingresultselevatedspontaneousmutationsmadepolymerasessubjectmismatchrepairabsencecauseshigherfourthB-familypolymeraseζgenome-wideanalysismutationalconsequencesduevarydependinggenomiclocusaccuracyacrossparticularlypreventingζ-dependenttRNAgenesadditiondependsactivityservesbackupsuppressingpresentevidencesolecellslikelyfidelitysuggestingrolemayevolutionarilyconservedpossibleunderlyingmechanismpotentialtumor-suppressorfunctionpromote

Similar Articles

Cited By (2)