Transcriptome-wide analysis of pseudouridylation in Drosophila melanogaster.

Wan Song, Ram Podicheti, Douglas B Rusch, William Daniel Tracey
Author Information
  1. Wan Song: Gill Center for Biomolecular Research, Indiana University, Bloomington, IN 47405, USA.
  2. Ram Podicheti: Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA.
  3. Douglas B Rusch: Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA.
  4. William Daniel Tracey: Gill Center for Biomolecular Research, Indiana University, Bloomington, IN 47405, USA. ORCID

Abstract

Pseudouridine (Psi) is one of the most frequent post-transcriptional modification of RNA. Enzymatic Psi modification occurs on rRNA, snRNA, snoRNA, tRNA, and non-coding RNA and has recently been discovered on mRNA. Transcriptome-wide detection of Psi (Psi-seq) has yet to be performed for the widely studied model organism Drosophila melanogaster. Here, we optimized Psi-seq analysis for this species and have identified thousands of Psi modifications throughout the female fly head transcriptome. We find that Psi is widespread on both cellular and mitochondrial rRNAs. In addition, more than a thousand Psi sites were found on mRNAs. When pseudouridylated, mRNAs frequently had many Psi sites. Many mRNA Psi sites are present in genes encoding for ribosomal proteins, and many are found in mitochondrial encoded RNAs, further implicating the importance of pseudouridylation for ribosome and mitochondrial function. The 7SLRNA of the signal recognition particle is the non-coding RNA most enriched for Psi. The 3 mRNAs most enriched for Psi encode highly expressed yolk proteins (Yp1, Yp2, and Yp3). By comparing the pseudouridine profiles in the RluA-2 mutant and the w1118 control genotype, we identified Psi sites that were missing in the mutant RNA as potential RluA-2 targets. Finally, differential gene expression analysis of the mutant transcriptome indicates a major impact of loss of RluA-2 on the ribosome and translational machinery.

Keywords

References

  1. Mol Biol Cell. 2009 Dec;20(24):5250-9 [PMID: 19846657]
  2. J Exp Bot. 2019 Oct 15;70(19):5089-5600 [PMID: 31173101]
  3. PLoS One. 2014 Oct 29;9(10):e110799 [PMID: 25353621]
  4. Nucleic Acids Res. 2021 Jan 8;49(D1):D899-D907 [PMID: 33219682]
  5. Anal Chem. 2020 Aug 18;92(16):11349-11356 [PMID: 32662983]
  6. RNA Biol. 2014;11(12):1619-29 [PMID: 25611331]
  7. Biochemistry. 1993 Sep 21;32(37):9754-62 [PMID: 8373778]
  8. Nature. 2011 Jun 15;474(7351):395-8 [PMID: 21677757]
  9. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  10. Nature. 2014 Nov 6;515(7525):143-6 [PMID: 25192136]
  11. World J Biol Chem. 2014 Nov 26;5(4):398-408 [PMID: 25426264]
  12. Nat Biotechnol. 2021 Oct;39(10):1278-1291 [PMID: 33986546]
  13. RNA Biol. 2017 Sep 2;14(9):1185-1196 [PMID: 28045575]
  14. Chem Biol. 2006 Nov;13(11):1125-35 [PMID: 17113994]
  15. Proc Natl Acad Sci U S A. 2019 Nov 12;116(46):23068-23074 [PMID: 31672910]
  16. Mol Biol Evol. 2008 Sep;25(9):1923-30 [PMID: 18566019]
  17. Nucleic Acids Res. 2012 Jul;40(12):5283-97 [PMID: 22379134]
  18. Nucleic Acids Res. 2020 Nov 4;48(19):e110 [PMID: 32976574]
  19. Cell. 2014 Sep 25;159(1):148-162 [PMID: 25219674]
  20. Nucleic Acids Res. 2022 Feb 28;50(4):2240-2257 [PMID: 34283226]
  21. Nucleic Acids Res. 1995 Aug 25;23(16):3290-4 [PMID: 7545286]
  22. Mol Cell. 2006 Nov 17;24(4):535-45 [PMID: 17188032]
  23. EMBO Rep. 2017 Jan;18(1):28-38 [PMID: 27974379]
  24. IUBMB Life. 2000 May;49(5):341-51 [PMID: 10902565]
  25. Biochemistry. 1967 Dec;6(12):3632-9 [PMID: 6076617]
  26. G3 (Bethesda). 2020 Dec 3;10(12):4425-4438 [PMID: 33028630]
  27. Genes (Basel). 2017 Nov 01;8(11): [PMID: 29104216]
  28. Biomaterials. 2016 Dec;109:78-87 [PMID: 27680591]
  29. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  30. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  31. Protein Cell. 2011 Sep;2(9):712-25 [PMID: 21976061]
  32. Faraday Discuss. 2014;169:195-207 [PMID: 25340471]
  33. EMBO Rep. 2016 Oct;17(10):1441-1451 [PMID: 27558685]
  34. RNA. 2017 Dec;23(12):1834-1849 [PMID: 28851751]
  35. Nat Chem Biol. 2015 Aug;11(8):592-7 [PMID: 26075521]
  36. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  37. Genome Res. 2004 Jun;14(6):1188-90 [PMID: 15173120]
  38. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  39. Sci Adv. 2023 Jun 23;9(25):eade5492 [PMID: 37343092]
  40. Mol Gen Genet. 1998 Oct;260(1):20-9 [PMID: 9829824]
  41. Nature. 2013 May 2;497(7447):80-5 [PMID: 23636399]
  42. Cold Spring Harb Perspect Med. 2013 Oct 01;3(10):a014324 [PMID: 24086064]
  43. J Mol Biol. 1997 Feb 21;266(2):246-68 [PMID: 9047361]
  44. RNA. 2005 Aug;11(8):1303-16 [PMID: 15987805]
  45. EMBO J. 2002 Oct 15;21(20):5353-63 [PMID: 12374736]
  46. IEEE/ACM Trans Comput Biol Bioinform. 2014 Jan-Feb;11(1):42-54 [PMID: 26355506]
  47. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  48. J Cell Biol. 1999 Mar 22;144(6):1123-33 [PMID: 10087258]
  49. Mol Cell. 2017 Jul 6;67(1):71-83.e7 [PMID: 28625553]
  50. Trends Biochem Sci. 2013 Apr;38(4):210-8 [PMID: 23391857]
  51. FEBS Lett. 2002 Mar 6;514(1):17-25 [PMID: 11904174]
  52. Genome Res. 2011 Dec;21(12):2096-113 [PMID: 21994247]
  53. Mol Cell. 2018 Aug 2;71(3):364-374 [PMID: 30075139]
  54. Proc Natl Acad Sci U S A. 2022 Jan 25;119(4): [PMID: 35058356]
  55. RNA Biol. 2010 Mar-Apr;7(2):192-204 [PMID: 20215871]

Grants

  1. P40 OD018537/NIH HHS
  2. R01 GM086458/NIGMS NIH HHS
  3. R35 GM148258/NIGMS NIH HHS

MeSH Term

Female
Animals
Transcriptome
Drosophila melanogaster
Pseudouridine
Gene Expression Profiling
RNA, Ribosomal
RNA, Messenger
RNA, Small Nucleolar
RNA Processing, Post-Transcriptional

Chemicals

Pseudouridine
RNA, Ribosomal
RNA, Messenger
RNA, Small Nucleolar

Word Cloud

Created with Highcharts 10.0.0PsiRNAsitesRluA-2Psi-seqDrosophilamelanogasteranalysistranscriptomemitochondrialmRNAsmutantmodificationnon-codingmRNATranscriptome-wideidentifiedfoundmanyproteinspseudouridylationribosomeenrichedpseudouridinedifferentialexpressionPseudouridineonefrequentpost-transcriptionalEnzymaticoccursrRNAsnRNAsnoRNAtRNArecentlydiscovereddetectionyetperformedwidelystudiedmodelorganismoptimizedspeciesthousandsmodificationsthroughoutfemaleflyheadfindwidespreadcellularrRNAsadditionthousandpseudouridylatedfrequentlyManypresentgenesencodingribosomalencodedRNAsimplicatingimportancefunction7SLRNAsignalrecognitionparticle3encodehighlyexpressedyolkYp1Yp2Yp3comparingprofilesw1118controlgenotypemissingpotentialtargetsFinallygeneindicatesmajorimpactlosstranslationalmachineryCMCtarget

Similar Articles

Cited By