Improving Lung Cancer Diagnosis with CT Radiomics and Serum Histoplasmosis Testing.

Hannah N Marmor, Stephen A Deppen, Valerie Welty, Michael N Kammer, Caroline M Godfrey, Khushbu Patel, Fabien Maldonado, Heidi Chen, Sandra L Starnes, David O Wilson, Ehab Billatos, Eric L Grogan
Author Information
  1. Hannah N Marmor: Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee. ORCID
  2. Stephen A Deppen: Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee. ORCID
  3. Valerie Welty: Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee. ORCID
  4. Michael N Kammer: Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee. ORCID
  5. Caroline M Godfrey: Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee. ORCID
  6. Khushbu Patel: Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee. ORCID
  7. Fabien Maldonado: Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee. ORCID
  8. Heidi Chen: Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee. ORCID
  9. Sandra L Starnes: Division of Thoracic Surgery, University of Cincinnati, Cincinnati, Ohio. ORCID
  10. David O Wilson: Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania. ORCID
  11. Ehab Billatos: Section of Pulmonary and Critical Care Medicine, Boston Medical Center, Boston, Massachusetts. ORCID
  12. Eric L Grogan: Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee. ORCID

Abstract

BACKGROUND: Indeterminate pulmonary nodules (IPN) are a diagnostic challenge in regions where pulmonary fungal disease and smoking prevalence are high. We aimed to determine the impact of a combined fungal and imaging biomarker approach compared with a validated prediction model (Mayo) to rule out benign disease and diagnose lung cancer.
METHODS: Adults ages 40 to 90 years with 6-30 mm IPNs were included from four sites. Serum samples were tested for Histoplasmosis IgG and IgM antibodies by enzyme immunoassay and a CT-based risk score was estimated from a validated radiomic model. Multivariable logistic regression models including Mayo score, radiomics score, and IgG and IgM Histoplasmosis antibody levels were estimated. The areas under the ROC curves (AUC) of the models were compared among themselves and to Mayo. Bias-corrected clinical net reclassification index (cNRI) was estimated to assess clinical reclassification using a combined biomarker model.
RESULTS: We included 327 patients; 157 from Histoplasmosis-endemic regions. The combined biomarker model including radiomics, Histoplasmosis serology, and Mayo score demonstrated improved diagnostic accuracy when endemic Histoplasmosis was accounted for [AUC, 0.84; 95% confidence interval (CI), 0.79-0.88; P < 0.0001 compared with 0.73; 95% CI, 0.67-0.78 for Mayo]. The combined model demonstrated improved reclassification with cNRI of 0.18 among malignant nodules.
CONCLUSIONS: fungal and imaging biomarkers may improve diagnostic accuracy and meaningfully reclassify IPNs. The endemic prevalence of Histoplasmosis and cancer impact model performance when using disease related biomarkers.
IMPACT: Integrating a combined biomarker approach into the diagnostic algorithm of IPNs could decrease time to diagnosis.

References

  1. Curr Opin Pulm Med. 2021 Jul 1;27(4):240-248 [PMID: 33973553]
  2. Clin Cancer Res. 2017 Mar 15;23(6):1442-1449 [PMID: 27663588]
  3. Clin Infect Dis. 2016 Apr 1;62(7):896-902 [PMID: 26797210]
  4. Arch Intern Med. 1997 Apr 28;157(8):849-55 [PMID: 9129544]
  5. Am Rev Respir Dis. 1969 Apr;99(4):Suppl:1-132 [PMID: 5767603]
  6. Cancer Epidemiol Biomarkers Prev. 2019 Feb;28(2):321-326 [PMID: 30341097]
  7. J Natl Cancer Inst. 2008 Oct 15;100(20):1432-8 [PMID: 18840817]
  8. Clin Vaccine Immunol. 2007 Dec;14(12):1587-91 [PMID: 17913863]
  9. JAMA Oncol. 2021 Feb 1;7(2):302-304 [PMID: 33270100]
  10. Am J Respir Crit Care Med. 2015 Nov 15;192(10):1208-14 [PMID: 26214244]
  11. Am J Respir Crit Care Med. 2020 Jul 15;202(2):241-249 [PMID: 32326730]
  12. Eur Respir J. 2021 Apr 1;57(4): [PMID: 33303552]
  13. Chest. 2013 May;143(5 Suppl):e93S-e120S [PMID: 23649456]
  14. Transl Res. 2021 Jul;233:77-91 [PMID: 33618009]
  15. Ann Am Thorac Soc. 2018 Oct;15(10):1117-1126 [PMID: 30272500]
  16. JAMA. 2021 Mar 09;325(10):962-970 [PMID: 33687470]
  17. Ann Thorac Surg. 2021 Feb;111(2):416-420 [PMID: 32682756]
  18. Thorax. 2015 Aug;70 Suppl 2:ii1-ii54 [PMID: 26082159]
  19. Cancer Prev Res (Phila). 2014 Dec;7(12):1173-8 [PMID: 25348855]
  20. J Proteome Res. 2009 Jan;8(1):113-7 [PMID: 19072545]
  21. Chest. 2018 Sep;154(3):491-500 [PMID: 29496499]
  22. Thorax. 2015 Aug;70(8):794-8 [PMID: 26135833]
  23. Am Soc Clin Oncol Educ Book. 2013;:359-64 [PMID: 23714547]
  24. Am J Respir Crit Care Med. 2021 Dec 1;204(11):1306-1316 [PMID: 34464235]
  25. BMC Pulm Med. 2019 Mar 7;19(1):59 [PMID: 30845938]
  26. Korean J Radiol. 2020 Feb;21(2):159-171 [PMID: 31997591]
  27. J Thorac Cardiovasc Surg. 2011 Mar;141(3):688-93 [PMID: 20933243]

Grants

  1. T32 CA106183/NCI NIH HHS
  2. U01 CA152662/NCI NIH HHS

MeSH Term

Adult
Humans
Middle Aged
Aged
Aged, 80 and over
Histoplasmosis
Tomography, X-Ray Computed
Lung Neoplasms
Immunoglobulin M
Immunoglobulin G

Chemicals

Immunoglobulin M
Immunoglobulin G

Word Cloud

Created with Highcharts 10.0.0model0combinedhistoplasmosisdiagnosticbiomarkerMayoscorediseasecomparedIPNsestimatedreclassificationpulmonarynodulesregionsfungalprevalenceimpactimagingapproachvalidatedcancerincludedSerumIgGIgMmodelsincludingradiomicsamongclinicalcNRIusingdemonstratedimprovedaccuracyendemic95%CIbiomarkersBACKGROUND:IndeterminateIPNchallengesmokinghighaimeddeterminepredictionrulebenigndiagnoselungMETHODS:Adultsages4090years6-30mmfoursitessamplestestedantibodiesenzymeimmunoassayCT-basedriskradiomicMultivariablelogisticregressionantibodylevelsareasROCcurvesAUCBias-correctednetindexassessRESULTS:327patients157histoplasmosis-endemicserologyaccounted[AUC84confidenceinterval79-088P<00017367-078Mayo]18malignantCONCLUSIONS:FungalmayimprovemeaningfullyreclassifyperformancerelatedIMPACT:IntegratingalgorithmdecreasetimediagnosisImprovingLungCancerDiagnosisCTRadiomicsHistoplasmosisTesting

Similar Articles

Cited By (2)