Room-temperature coherent optical manipulation of hole spins in solution-grown perovskite quantum dots.

Xuyang Lin, Yaoyao Han, Jingyi Zhu, Kaifeng Wu
Author Information
  1. Xuyang Lin: State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China.
  2. Yaoyao Han: State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China. ORCID
  3. Jingyi Zhu: State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China. ORCID
  4. Kaifeng Wu: State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China. kwu@dicp.ac.cn. ORCID

Abstract

Manipulation of solid-state spin coherence is an important paradigm for quantum information processing. Current systems either operate at very low temperatures or are difficult to scale up. Developing low-cost, scalable materials whose spins can be coherently manipulated at room temperature is thus highly attractive for a sustainable future of quantum information science. Here we report ambient-condition all-optical initialization, manipulation and readout of hole spins in an ensemble of solution-grown CsPbBr perovskite quantum dots with a single hole in each dot. The hole spins are initialized by sub-picosecond electron scavenging following circularly polarized femtosecond-pulse excitation. A transverse magnetic field induces spin precession, and a second off-resonance femtosecond-pulse coherently rotates hole spins via strong light-matter interaction. These operations accomplish near-complete quantum-state control, with a coherent rotation angle close to the π radian, of hole spins at room temperature.

References

  1. Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. & Petta, J. R. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013). [DOI: 10.1126/science.1231364]
  2. Michler, P. Quantum Dots for Quantum Information Technologies Vol. 237 (Springer, 2017).
  3. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998). [DOI: 10.1103/PhysRevA.57.120]
  4. Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999). [DOI: 10.1103/PhysRevLett.83.4204]
  5. Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008). [DOI: 10.1038/nature07129]
  6. Nowack, K. C., Koppens, F. H. L., Nazarov Yu, V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007). [DOI: 10.1126/science.1148092]
  7. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006). [DOI: 10.1038/nature05065]
  8. Gupta, J. A., Knobel, R., Samarth, N. & Awschalom, D. D. Ultrafast manipulation of electron spin coherence. Science 292, 2458–2461 (2001).
  9. Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).
  10. Zhang, J., Tang, Y., Lee, K. & Ouyang, M. Tailoring light–matter–spin interactions in colloidal hetero-nanostructures. Nature 466, 91–95 (2010). [DOI: 10.1038/nature09150]
  11. Greilich, A. et al. Ultrafast optical rotations of electron spins in quantum dots. Nat. Phys. 5, 262–266 (2009). [DOI: 10.1038/nphys1226]
  12. Carter, S. G., Chen, Z. & Cundiff, S. T. Ultrafast below-resonance Raman rotation of electron spins in GaAs quantum wells. Phys. Rev. B 76, 201308 (2007). [DOI: 10.1103/PhysRevB.76.201308]
  13. Wu, Y. et al. Selective optical control of electron spin coherence in singly charged GaAs-AlGaAs quantum dots. Phys. Rev. Lett. 99, 097402 (2007). [DOI: 10.1103/PhysRevLett.99.097402]
  14. Ramsay, A. J. et al. Fast optical preparation, control, and readout of a single quantum dot spin. Phys. Rev. Lett. 100, 197401 (2008). [DOI: 10.1103/PhysRevLett.100.197401]
  15. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008). [DOI: 10.1038/nature07530]
  16. Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164–168 (2015). [DOI: 10.1038/nmat4145]
  17. García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).
  18. Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017). [DOI: 10.1126/science.aam7093]
  19. Even, J., Pedesseau, L., Jancu, J.-M. & Katan, C. Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 4, 2999–3005 (2013). [DOI: 10.1021/jz401532q]
  20. Odenthal, P. et al. Spin-polarized exciton quantum beating in hybrid organic–inorganic perovskites. Nat. Phys. 13, 894–899 (2017). [DOI: 10.1038/nphys4145]
  21. Giovanni, D. et al. Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in CHNHPbI perovskite thin films. Nano Lett. 15, 1553–1558 (2015). [DOI: 10.1021/nl5039314]
  22. Zhou, M., Sarmiento, J. S., Fei, C., Zhang, X. & Wang, H. Effect of composition on the spin relaxation of lead halide perovskites. J. Phys. Chem. Lett. 11, 1502–1507 (2020). [DOI: 10.1021/acs.jpclett.0c00004]
  23. Chen, X. et al. Impact of layer thickness on the charge carrier and spin coherence lifetime in two-dimensional layered perovskite single crystals. ACS Energy Lett. 3, 2273–2279 (2018). [DOI: 10.1021/acsenergylett.8b01315]
  24. Li, Y., Luo, X., Liu, Y., Lu, X. & Wu, K. Size- and composition-dependent exciton spin relaxation in lead halide perovskite quantum dots. ACS Energy Lett. 5, 1701–1708 (2020). [DOI: 10.1021/acsenergylett.0c00525]
  25. Strohmair, S. et al. Spin polarization dynamics of free charge carriers in CsPbI3 nanocrystals. Nano Lett. 20, 4724–4730 (2020). [DOI: 10.1021/acs.nanolett.9b05325]
  26. Yang, Y. et al. Large polarization-dependent exciton optical Stark effect in lead iodide perovskites. Nat. Commun. 7, 12613 (2016). [DOI: 10.1038/ncomms12613]
  27. Li, Y., He, S., Luo, X., Lu, X. & Wu, K. Strong spin-selective optical Stark effect in lead halide perovskite quantum dots. J. Phys. Chem. Lett. 11, 3594–3600 (2020). [DOI: 10.1021/acs.jpclett.0c00879]
  28. Giovanni, D. et al. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites. Sci. Adv. 2, e1600477 (2016). [DOI: 10.1126/sciadv.1600477]
  29. Yumoto, G. et al. Strong spin-orbit coupling inducing Autler-Townes effect in lead halide perovskite nanocrystals. Nat. Commun. 12, 3026 (2021). [DOI: 10.1038/s41467-021-23291-w]
  30. Tao, W., Zhou, Q. & Zhu, H. Dynamic polaronic screening for anomalous exciton spin relaxation in two-dimensional lead halide perovskites. Sci. Adv. 6, eabb7132 (2020). [DOI: 10.1126/sciadv.abb7132]
  31. Rainò, G. et al. Ultra-narrow room-temperature emission from single CsPbBr perovskite quantum dots. Nat. Commun. 13, 2587 (2022). [DOI: 10.1038/s41467-022-30016-0]
  32. Park, Y.-S., Guo, S., Makarov, N. S. & Klimov, V. I. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 9, 10386–10393 (2015). [DOI: 10.1021/acsnano.5b04584]
  33. Zhu, H., Song, N. H. & Lian, T. Q. Controlling charge separation and recombination rates in CdSe/ZnS type I core-shell quantum dots by shell thicknesses. J. Am. Chem. Soc. 132, 15038–15045 (2010). [DOI: 10.1021/ja106710m]
  34. Mandal, S., George, L. & Tkachenko, N. V. Charge transfer dynamics in CsPbBr perovskite quantum dots–anthraquinone/fullerene (C60) hybrids. Nanoscale 11, 862–869 (2019). [DOI: 10.1039/C8NR08445A]
  35. Luo, X. et al. Mechanisms of triplet energy transfer across the inorganic nanocrystal/organic molecule interface. Nat. Commun. 11, 28 (2020). [DOI: 10.1038/s41467-019-13951-3]
  36. Song, N., Zhu, H., Jin, S., Zhan, W. & Lian, T. Poisson-distributed electron-transfer dynamics from single quantum dots to C60 molecules. ACS Nano 5, 613–621 (2010). [DOI: 10.1021/nn1028828]
  37. Becker, M. A. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018). [DOI: 10.1038/nature25147]
  38. Yin, C. et al. Bright-exciton fine-structure splittings in single perovskite nanocrystals. Phys. Rev. Lett. 119, 026401 (2017). [DOI: 10.1103/PhysRevLett.119.026401]
  39. Tamarat, P. et al. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nat. Mater. 18, 717–724 (2019). [DOI: 10.1038/s41563-019-0364-x]
  40. Han, Y. et al. Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI perovskite quantum dots. Nat. Mater. 21, 1282–1289 (2022). [DOI: 10.1038/s41563-022-01349-4]
  41. Grigoryev, P. S., Belykh, V. V., Yakovlev, D. R., Lhuillier, E. & Bayer, M. Coherent spin dynamics of electrons and holes in CsPbBr colloidal nanocrystals. Nano Lett. 21, 8481–8487 (2021). [DOI: 10.1021/acs.nanolett.1c03292]
  42. Crane, M. J. et al. Coherent spin precession and lifetime-limited spin dephasing in CsPbBr perovskite nanocrystals. Nano Lett. 20, 8626–8633 (2020). [DOI: 10.1021/acs.nanolett.0c03329]
  43. Tice, D. B., Weinberg, D. J., Mathew, N., Chang, R. P. H. & Weiss, E. A. Measurement of wavelength-dependent polarization character in the absorption anisotropies of ensembles of CdSe nanorods. J. Phys. Chem. C 117, 13289–13296 (2013). [DOI: 10.1021/jp402936u]
  44. Li, Y., Luo, X., Ding, T., Lu, X. & Wu, K. Size- and halide-dependent auger recombination in lead halide perovskite nanocrystals. Angew. Chem. Int. Ed. 59, 14292–14295 (2020). [DOI: 10.1002/anie.202004668]
  45. Kroutvar, M. et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004). [DOI: 10.1038/nature03008]
  46. Gupta, J. A., Awschalom, D. D., Efros, A. L. & Rodina, A. V. Spin dynamics in semiconductor nanocrystals. Phys. Rev. B 66, 125307 (2002). [DOI: 10.1103/PhysRevB.66.125307]
  47. Ye, Z., Sun, D. & Heinz, T. F. Optical manipulation of valley pseudospin. Nat. Phys. 13, 26–29 (2017). [DOI: 10.1038/nphys3891]
  48. Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe monolayers. Science 346, 1205–1208 (2014).
  49. Li, Y. et al. Excitonic Bloch–Siegert shift in CsPbI perovskite quantum dots. Nat. Commun. 13, 5559 (2022). [DOI: 10.1038/s41467-022-33314-9]
  50. Chen, P., Piermarocchi, C., Sham, L. J., Gammon, D. & Steel, D. G. Theory of quantum optical control of a single spin in a quantum dot. Phys. Rev. B 69, 075320 (2004). [DOI: 10.1103/PhysRevB.69.075320]
  51. Dong, Y. et al. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 18, 3716–3722 (2018). [DOI: 10.1021/acs.nanolett.8b00861]
  52. Li, Y. et al. On the absence of a phonon bottleneck in strongly-confined CsPbBr perovskite nanocrystals. Chem. Sci. 10, 5983–5989 (2019). [DOI: 10.1039/C9SC01339C]
  53. Maes, J. et al. Light absorption coefficient of CsPbBr perovskite nanocrystals. J. Phys. Chem. Lett. 9, 3093–3097 (2018). [DOI: 10.1021/acs.jpclett.8b01065]
  54. He, S., Han, Y., Guo, J. & Wu, K. Long-lived delayed emission from CsPbBr perovskite nanocrystals for enhanced photochemical reactivity. ACS Energy Lett. 6, 2786–2791 (2021). [DOI: 10.1021/acsenergylett.1c01291]
  55. Puthenpurayil, J., Cheng, O. H.-C., Qiao, T., Rossi, D. & Son, D. H. On the determination of absorption cross section of colloidal lead halide perovskite quantum dots. J. Chem. Phys. 151, 154706 (2019). [DOI: 10.1063/1.5126039]

Grants

  1. 22173098/National Natural Science Foundation of China (National Science Foundation of China)

Word Cloud

Created with Highcharts 10.0.0spinsholequantumspininformationcoherentlyroomtemperaturemanipulationsolution-grownperovskitedotsfemtosecond-pulsecoherentManipulationsolid-statecoherenceimportantparadigmprocessingCurrentsystemseitheroperatelowtemperaturesdifficultscaleDevelopinglow-costscalablematerialswhosecanmanipulatedthushighlyattractivesustainablefuturesciencereportambient-conditionall-opticalinitializationreadoutensembleCsPbBrsingledotinitializedsub-picosecondelectronscavengingfollowingcircularlypolarizedexcitationtransversemagneticfieldinducesprecessionsecondoff-resonancerotatesviastronglight-matterinteractionoperationsaccomplishnear-completequantum-statecontrolrotationanglecloseπradianRoom-temperatureoptical

Similar Articles

Cited By