Increasing diversity in connectomics with the Chinese Human Connectome Project.

Jianqiao Ge, Guoyuan Yang, Meizhen Han, Sizhong Zhou, Weiwei Men, Lang Qin, Bingjiang Lyu, Hai Li, Haobo Wang, Hengyi Rao, Zaixu Cui, Hesheng Liu, Xi-Nian Zuo, Jia-Hong Gao
Author Information
  1. Jianqiao Ge: Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China. ORCID
  2. Guoyuan Yang: Advanced Research Institute of Multidisciplinary Sciences, School of Medical Technology, School of Life Science, Beijing Institute of Technology, Beijing, China. ORCID
  3. Meizhen Han: McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
  4. Sizhong Zhou: Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
  5. Weiwei Men: Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
  6. Lang Qin: Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
  7. Bingjiang Lyu: Changping Laboratory, Beijing, China.
  8. Hai Li: Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
  9. Haobo Wang: Beijing Intelligent Brain Cloud, Inc., Beijing, China.
  10. Hengyi Rao: Center for Magnetic Resonance Imaging Research & Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China.
  11. Zaixu Cui: Chinese Institute for Brain Research, Beijing, China.
  12. Hesheng Liu: Changping Laboratory, Beijing, China.
  13. Xi-Nian Zuo: McGovern Institute for Brain Research, Beijing Normal University, Beijing, China. ORCID
  14. Jia-Hong Gao: Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China. jgao@pku.edu.cn. ORCID

Abstract

Cultural differences and biological diversity play important roles in shaping Human brain structure and function. To date, most large-scale multimodal neuroimaging datasets have been obtained primarily from people living in Western countries, omitting the crucial contrast with populations living in other regions. The Chinese Human Connectome Project (CHCP) aims to address these resource and knowledge gaps by acquiring imaging, genetic and behavioral data from a large sample of participants living in an Eastern culture. The CHCP collected multimodal neuroimaging data from healthy Chinese adults using a protocol comparable to that of the Human Connectome Project. Comparisons between the CHCP and Human Connectome Project revealed both commonalities and distinctions in brain structure, function and connectivity. The corresponding large-scale brain parcellations were highly reproducible across the two datasets, with the language processing task showing the largest differences. The CHCP dataset is publicly available in an effort to facilitate transcultural and cross-ethnic brain-mind studies.

References

  1. Lenroot, R. K. & Giedd, J. N. The changing impact of genes and environment on brain development during childhood and adolescence: initial findings from a neuroimaging study of pediatric twins. Dev. Psychopathol. 20, 1161–1175 (2008).
  2. Tooley, U. A., Bassett, D. S. & Mackey, A. P. Environmental influences on the pace of brain development. Nat. Rev. Neurosci. 22, 372–384 (2021).
  3. Kang, H. J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011).
  4. Han, S. & Northoff, G. Culture-sensitive neural substrates of human cognition: a transcultural neuroimaging approach. Nat. Rev. Neurosci. 9, 646–654 (2008).
  5. Kitayama, S. & Salvador, C. E. Culture embrained: going beyond the nature-nurture dichotomy. Perspect. Psychol. Sci. 12, 841–854 (2017).
  6. Biswal, B. B. et al. Toward discovery science of human brain function. Proc. Natl Acad. Sci. USA 107, 4734–4739 (2010).
  7. Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. NeuroImage 80, 62–79 (2013).
  8. Milham, M. P. et al. Assessment of the impact of shared brain imaging data on the scientific literature. Nat. Commun. 9, 2818 (2018).
  9. Glasser, M. F. et al. The Human Connectome Project’s neuroimaging approach. Nat. Neurosci. 19, 1175–1187 (2016).
  10. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).
  11. Barch, D. M. et al. Function in the human connectome: task-fMRI and individual differences in behavior. NeuroImage 80, 169–189 (2013).
  12. Smith, S. M. et al. A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nat. Neurosci. 18, 1565–1567 (2015).
  13. Moser, D. A. et al. An integrated brain–behavior model for working memory. Mol. Psychiatry 23, 1974–1980 (2018).
  14. Elam, J. S. et al. The Human Connectome Project: a retrospective. NeuroImage 244, 118543 (2021).
  15. Van Essen, D. C. et al. The Human Connectome Project: a data acquisition perspective. NeuroImage 62, 2222–2231 (2012).
  16. Marcus, D. S. et al. Human Connectome Project informatics: quality control, database services, and data visualization. NeuroImage 80, 202–219 (2013).
  17. Anderson, K. M. et al. Heritability of individualized cortical network topography. Proc. Natl Acad. Sci. USA 118, e2016271118 (2021).
  18. Zuo, X. N. et al. Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space. NeuroImage 65, 374–386 (2013).
  19. Chen, B. et al. Individual variability and test-retest reliability revealed by ten repeated resting-state brain scans over one month. PLoS ONE 10, 1–21 (2015).
  20. Yan, C. G., Wang, X. D. & Lu, B. DPABISurf: data processing & analysis for brain imaging on surface. Sci. Bull. 66, 2453–2455 (2021).
  21. Fan, L. et al. The Human Brainnetome Atlas: a new brain atlas based on connectional architecture. Cereb. Cortex 26, 3508–3526 (2016).
  22. Han, M. et al. Individualized cortical parcellation based on diffusion MRI tractography. Cereb. Cortex 30, 3198–3208 (2020).
  23. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).
  24. Kong, R. et al. Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb. Cortex 29, 2533–2551 (2019).
  25. Massey, F. J. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46, 68–78 (1951).
  26. Huttenlocher, P. R. Neural Plasticity: The Effects of Environment on the Development of the Cerebral Cortex (Harvard Univ. Press, 2002).
  27. Mueller, S. et al. Individual variability in functional connectivity architecture of the human brain. Neuron 77, 586–595 (2013).
  28. Gratton, C. et al. Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron 98, 439–452 (2018).
  29. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).
  30. Huntenburg, J. M., Bazin, P. L. & Margulies, D. S. Large-scale gradients in human cortical organization. Trends Cogn. Sci. 22, 21–31 (2018).
  31. Friederici, A. D. The brain basis of language processing: from structure to function. Physiol. Rev. 91, 1357–1392 (2011).
  32. Siok, W. T., Perfetti, C. A., Jin, Z. & Tan, L. H. Biological abnormality of impaired reading is constrained by culture. Nature 431, 71–76 (2004).
  33. Ge, J. et al. Cross-language differences in the brain network subserving intelligible speech. Proc. Natl Acad. Sci. USA 112, 2972–2977 (2015).
  34. Boroditsky, L. Does language shape thought?: Mandarin and English speakers’ conceptions of time. Cogn. Psychol. 43, 1–22 (2001).
  35. Tang, Y. et al. Arithmetic processing in the brain shaped by cultures. Proc. Natl Acad. Sci. USA 103, 10775–10780 (2006).
  36. Binder, J. R. et al. Mapping anterior temporal lobe language areas with fMRI: a multicenter normative study. NeuroImage 54, 1465–1475 (2011).
  37. Baaré, W. F. C. et al. Quantitative genetic modeling of variation in human brain morphology. Cereb. Cortex 11, 816–824 (2001).
  38. Naqvi, S. et al. Shared heritability of human face and brain shape. Nat. Genet. 53, 830–839 (2021).
  39. Grasby, K. L. et al. The genetic architecture of the human cerebral cortex. Science 367, eaay6690 (2020).
  40. Peper, J. S., Brouwer, R. M., Boomsma, D. I., Kahn, R. S. & Hulshoff Pol, H. E. Genetic influences on human brain structure: a review of brain imaging studies in twins. Hum. Brain Mapp. 28, 464–473 (2007).
  41. Teeuw, J. et al. Genetic influences on the development of cerebral cortical thickness during childhood and adolescence in a Dutch longitudinal twin sample: the brainscale study. Cereb. Cortex 29, 978–993 (2019).
  42. Thompson, P. M. et al. Genetic influences on brain structure. Nat. Neurosci. 4, 1253–1258 (2001).
  43. Fan, C. C. et al. Modeling the 3D geometry of the cortical surface with genetic ancestry. Curr. Biol. 25, 1988–1992 (2015).
  44. Arnatkeviciute, A., Fulcher, B. D., Bellgrove, M. A. & Fornito, A. Where the genome meets the connectome: understanding how genes shape human brain connectivity. NeuroImage 244, 118570 (2021).
  45. Han, S. & Ma, Y. A culture-behavior-brain loop model of human development. Trends Cogn. Sci. 19, 666–676 (2015).
  46. Casey, B. J. et al. The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018).
  47. Bookheimer, S. Y. et al. The lifespan Human Connectome Project in Aging: an overview. NeuroImage 185, 335–348 (2019).
  48. Dong, H. M. et al. Charting brain growth in tandem with brain templates at school age. Sci. Bull. 65, 1924–1934 (2020).
  49. Liu, S. et al. Chinese color nest project: an accelerated longitudinal brain-mind cohort. Dev. Cogn. Neurosci. 52, 101020 (2021).
  50. Dong, H. M., Margulies, D. S., Zuo, X. N. & Holmes, A. J. Shifting gradients of macroscale cortical organization mark the transition from childhood to adolescence. Proc. Natl Acad. Sci. USA 118, e2024448118 (2021).
  51. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, 1–10 (2015).
  52. Bethlehem, R. A. I. et al. Brain charts for the human lifespan. Nature 604, 525–533 (2022).
  53. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).
  54. Littlejohns, T. J. et al. The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nat. Commun. 11, 1–12 (2020).
  55. Xu, Q. et al. CHIMGEN: a Chinese imaging genetics cohort to enhance cross-ethnic and cross-geographic brain research. Mol. Psychiatry 25, 517–529 (2020).
  56. Schumann, G. et al. The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol. Psychiatry 15, 1128–1139 (2010).
  57. Xu, J. et al. Global urbanicity is associated with brain and behaviour in young people. Nat. Hum. Behav. 6, 279–293 (2022).
  58. Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).
  59. Poo, M. M. et al. China Brain Project: basic neuroscience, brain diseases, and brain-inspired computing. Neuron 92, 591–596 (2016).
  60. Gao, P. et al. A Chinese multi-modal neuroimaging data release for increasing diversity of human brain mapping. Sci. Data 9, 286 (2022).
  61. Li, J. et al. Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity. Sci. Adv. 8, eabj1812 (2022).
  62. Nisbett, R. E., Choi, I., Peng, K. & Norenzayan, A. Culture and systems of thought: holistic versus analytic cognition. Psychol. Rev. 108, 291–310 (2001).
  63. Gardner, W. L., Gabriel, S. & Lee, A. Y. “I” value freedom, but “we” value relationships: self-construal priming mirrors cultural differences in judgment. Psychol. Sci. 10, 321–326 (1999).
  64. Markus, H. R. & Kitayama, S. Culture and the self: implications for cognition, emotion, and motivation. Psychol. Rev. 98, 224–253 (1991).
  65. Gelfand, M. J. et al. Differences between tight and loose cultures: a 33-nation study. Science 332, 1100–1104 (2011).
  66. Yamashita, A. et al. Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias. PLoS Biol. 17, e3000042 (2019).
  67. Tian, D. et al. A deep learning-based multisite neuroimage harmonization framework established with a traveling-subject dataset. NeuroImage 257, 119297 (2022).
  68. Yu, M. et al. Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data. Hum. Brain Mapp. 39, 4213–4227 (2018).
  69. Wilker, E. H. et al. Green space and mortality following ischemic stroke. Environ. Res. 133, 42–48 (2014).
  70. Colodro-Conde, L. et al. Association between population density and genetic risk for schizophrenia. JAMA Psychiatry 75, 901–910 (2018).
  71. Bloom, D. E., Canning, D. & Jamison, D. T. Health, wealth, and welfare. Financ. Dev. 41, 10–15 (2004).
  72. Gupta, P. et al. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ. 40, 5880–5892 (2006).
  73. Gordon, E. M. et al. Precision functional mapping of individual human brains. Neuron 95, 791–807 (2017).
  74. Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124 (2013).
  75. Pierpaoli, C. in Diffusion MRI (ed. Jones, D. K.) Ch. 18 (Oxford Univ. Press, 2010).
  76. Makris, N. et al. Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Ann. Neurol. 42, 951–962 (1997).
  77. Pajevic, S. & Pierpaoli, C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn. Reson. Med. 42, 526–540 (1999).
  78. Eickhoff, S. B. et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25, 1325–1335 (2005).
  79. Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from Intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).
  80. Roberts, J. A., Perry, A., Roberts, G., Mitchell, P. B. & Breakspear, M. Consistency-based thresholding of the human connectome. NeuroImage 145, 118–129 (2017).
  81. Lashkari, D., Vul, E., Kanwisher, N. & Golland, P. Discovering structure in the space of fMRI selectivity profiles. NeuroImage 50, 1085–1098 (2010).
  82. Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945).
  83. Cohen, J. A power primer. Psychol. Bull. 112, 155–159 (1992).

MeSH Term

Adult
Humans
Connectome
East Asian People
Magnetic Resonance Imaging
Brain
Neuroimaging
Language

Word Cloud

Created with Highcharts 10.0.0HumanConnectomeProjectCHCPbrainlivingChinesedifferencesdiversitystructurefunctionlarge-scalemultimodalneuroimagingdatasetsdataCulturalbiologicalplayimportantrolesshapinghumandateobtainedprimarilypeopleWesterncountriesomittingcrucialcontrastpopulationsregionsaimsaddressresourceknowledgegapsacquiringimaginggeneticbehaviorallargesampleparticipantsEasternculturecollectedhealthyadultsusingprotocolcomparableComparisonsrevealedcommonalitiesdistinctionsconnectivitycorrespondingparcellationshighlyreproducibleacrosstwolanguageprocessingtaskshowinglargestdatasetpubliclyavailableeffortfacilitatetransculturalcross-ethnicbrain-mindstudiesIncreasingconnectomics

Similar Articles

Cited By