Enzymatic Fischer-Tropsch-Type Reactions.

Yilin Hu, Chi Chung Lee, Mario Grosch, Joseph B Solomon, Wolfgang Weigand, Markus W Ribbe
Author Information
  1. Yilin Hu: Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California92697-3900, United States. ORCID
  2. Chi Chung Lee: Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California92697-3900, United States.
  3. Mario Grosch: Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California92697-3900, United States.
  4. Joseph B Solomon: Department of Chemistry, University of California Irvine, Irvine, California92697-2025, United States.
  5. Wolfgang Weigand: Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743Jena, Germany.
  6. Markus W Ribbe: Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California92697-3900, United States. ORCID

Abstract

The Fischer-Tropsch (FT) process converts a mixture of CO and H into liquid hydrocarbons as a major component of the gas-to-liquid technology for the production of synthetic fuels. Contrary to the energy-demanding chemical FT process, the enzymatic FT-type reactions catalyzed by nitrogenase enzymes, their metalloclusters, and synthetic mimics utilize H and e as the reducing equivalents to reduce CO, CO, and CN into hydrocarbons under ambient conditions. The C chemistry exemplified by these FT-type reactions is underscored by the structural and electronic properties of the nitrogenase-associated metallocenters, and recent studies have pointed to the potential relevance of this reactivity to nitrogenase mechanism, prebiotic chemistry, and biotechnological applications. This review will provide an overview of the features of nitrogenase enzymes and associated metalloclusters, followed by a detailed discussion of the activities of various nitrogenase-derived FT systems and plausible mechanisms of the enzymatic FT reactions, highlighting the versatility of this unique reactivity while providing perspectives onto its mechanistic, evolutionary, and biotechnological implications.

References

  1. Chem Rev. 1996 Nov 7;96(7):2965-2982 [PMID: 11848848]
  2. Environ Sci Technol. 2002 Apr 15;36(8):1757-62 [PMID: 11993874]
  3. Science. 2011 Aug 5;333(6043):753-5 [PMID: 21817053]
  4. Angew Chem Int Ed Engl. 2011 Aug 16;50(34):7787-90 [PMID: 21726031]
  5. Dalton Trans. 2008 Nov 21;(43):5977-91 [PMID: 19082054]
  6. Curr Opin Chem Biol. 2011 Apr;15(2):276-83 [PMID: 21130022]
  7. Biochemistry. 1995 Apr 25;34(16):5382-9 [PMID: 7727396]
  8. Chembiochem. 2015 Sep 21;16(14):1993-6 [PMID: 26266490]
  9. Biochemistry. 1981 Sep 1;20(18):5132-40 [PMID: 6945871]
  10. Proc Natl Acad Sci U S A. 2012 May 1;109(18):6922-6 [PMID: 22509042]
  11. J Am Chem Soc. 2010 Sep 15;132(36):12612-8 [PMID: 20718463]
  12. Chem Rev. 2014 Apr 23;114(8):4149-74 [PMID: 24521136]
  13. Biochemistry. 1996 Jan 16;35(2):479-87 [PMID: 8555218]
  14. Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18474-8 [PMID: 19828444]
  15. J Am Chem Soc. 2015 Jan 14;137(1):146-9 [PMID: 25522159]
  16. Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9209-14 [PMID: 19478062]
  17. Science. 1997 Apr 11;276(5310):245-7 [PMID: 9092471]
  18. Biochemistry. 1980 Oct 14;19(21):4926-32 [PMID: 6252962]
  19. Biochemistry. 1997 Feb 11;36(6):1181-7 [PMID: 9063865]
  20. Biochemistry. 1995 Aug 29;34(34):10713-23 [PMID: 7662655]
  21. Inorg Chem. 2009 Apr 6;48(7):2735-47 [PMID: 19326927]
  22. Angew Chem Int Ed Engl. 2011 Jan 3;50(1):272-5 [PMID: 21120978]
  23. Biochemistry. 1985 Feb 26;24(5):1141-7 [PMID: 3913463]
  24. J Am Chem Soc. 2017 Jan 18;139(2):603-606 [PMID: 28043123]
  25. Angew Chem Int Ed Engl. 2019 Jul 15;58(29):9944-9947 [PMID: 31131499]
  26. Philos Trans A Math Phys Eng Sci. 2005 Apr 15;363(1829):971-84; discussion 1035-40 [PMID: 15901546]
  27. mBio. 2018 Mar 13;9(2): [PMID: 29535200]
  28. Angew Chem Int Ed Engl. 2011 Jun 6;50(24):5545-7 [PMID: 21538750]
  29. Microbiol Rev. 1988 Dec;52(4):452-84 [PMID: 3070320]
  30. Science. 2011 Nov 18;334(6058):974-7 [PMID: 22096198]
  31. Science. 2005 Aug 26;309(5739):1377-80 [PMID: 16123301]
  32. Chemistry. 2022 Feb 24;28(12):e202103745 [PMID: 35098591]
  33. Chemistry. 2004 Oct 4;10(19):4770-6 [PMID: 15372690]
  34. Science. 2014 Sep 26;345(6204):1620-3 [PMID: 25258081]
  35. Nat Commun. 2018 May 8;9(1):1821 [PMID: 29739945]
  36. Biochemistry. 1999 Oct 26;38(43):14279-85 [PMID: 10572002]
  37. Angew Chem Int Ed Engl. 2012 Feb 20;51(8):1947-9 [PMID: 22253035]
  38. EMBO J. 1982;1(8):945-51 [PMID: 6329717]
  39. J Inorg Biochem. 1988 Jun;33(2):111-20 [PMID: 2842451]
  40. J Biol Chem. 1994 Feb 4;269(5):3290-4 [PMID: 8106367]
  41. Biochem J. 1988 Feb 15;250(1):299-302 [PMID: 2833236]
  42. Biochem J. 1988 Jul 15;253(2):587-95 [PMID: 3140782]
  43. Chembiochem. 2020 Jun 15;21(12):1668-1670 [PMID: 32426925]
  44. Science. 2011 Nov 18;334(6058):940 [PMID: 22096190]
  45. Chem Rev. 2014 Apr 23;114(8):4063-80 [PMID: 24328215]
  46. Biochem J. 1987 May 15;244(1):197-207 [PMID: 2821997]
  47. J Bacteriol. 1989 Jun;171(6):3162-7 [PMID: 2722744]
  48. Acc Chem Res. 2019 May 21;52(5):1168-1176 [PMID: 30977994]
  49. J Biol Chem. 1998 Oct 9;273(41):26330-7 [PMID: 9756863]
  50. Annu Rev Microbiol. 2020 Sep 8;74:247-266 [PMID: 32660386]
  51. Dalton Trans. 2012 Jan 28;41(4):1118-27 [PMID: 22101422]
  52. Biochemistry. 1981 Dec 8;20(25):7272-7 [PMID: 6274395]
  53. Science. 2010 Aug 6;329(5992):642 [PMID: 20689010]
  54. Adv Inorg Biochem. 1990;8:165-98 [PMID: 2206026]
  55. Nature. 1996 May 2;381(6577):59-61 [PMID: 8609988]
  56. Chem Rev. 1996 Nov 7;96(7):3013-3030 [PMID: 11848850]
  57. Science. 2020 Jun 19;368(6497):1381-1385 [PMID: 32554596]
  58. Biochem J. 1990 Mar 15;266(3):929-31 [PMID: 2327976]
  59. Chemistry. 2017 Nov 16;23(64):16152-16156 [PMID: 28984391]
  60. Angew Chem Int Ed Engl. 2018 Mar 19;57(13):3411-3414 [PMID: 29409145]
  61. Biochemistry. 1998 Aug 11;37(32):11376-84 [PMID: 9698385]
  62. Biochem J. 2006 Jul 15;397(2):261-70 [PMID: 16566750]
  63. Chemistry. 2019 Feb 18;25(10):2389-2395 [PMID: 30225894]
  64. Biochemistry. 1983 Sep 13;22(19):4472-80 [PMID: 6354256]
  65. Dalton Trans. 2008 Nov 21;(43):5992-8 [PMID: 19082055]
  66. Orig Life Evol Biosph. 2008 Jun;38(3):257-70 [PMID: 18409029]
  67. Bioelectrochemistry. 2018 Apr;120:104-109 [PMID: 29223886]
  68. Eur J Inorg Chem. 2011 May;2011(13):2064-2074 [PMID: 27630531]
  69. Chem Rev. 1996 Nov 7;96(7):2983-3012 [PMID: 11848849]
  70. Nat Commun. 2016 Dec 15;7:13641 [PMID: 27976719]
  71. Angew Chem Int Ed Engl. 2022 May 2;61(19):e202202271 [PMID: 35218104]
  72. Sci Rep. 2017 Jul 24;7(1):6275 [PMID: 28740207]
  73. Nature. 1997 May 22;387(6631):370-6 [PMID: 9163420]
  74. Chem Rev. 2007 Feb;107(2):514-62 [PMID: 17261073]
  75. Chem Rev. 2014 Apr 23;114(8):4041-62 [PMID: 24467365]
  76. mBio. 2019 Jul 9;10(4): [PMID: 31289188]
  77. Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16327-32 [PMID: 24062454]
  78. Angew Chem Int Ed Engl. 2011 Aug 22;50(35):7984-6 [PMID: 21761528]
  79. Biochemistry. 1978 May 16;17(10):1866-72 [PMID: 656366]
  80. RSC Adv. 2021 Oct 1;11(51):32464-32475 [PMID: 35495494]
  81. Biochemistry. 1995 Apr 25;34(16):5372-8 [PMID: 7727395]
  82. Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13825-30 [PMID: 16166259]
  83. Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13845-9 [PMID: 26515097]
  84. Nat Chem. 2015 Apr;7(4):301-7 [PMID: 25803468]
  85. Angew Chem Int Ed Engl. 2014 Oct 20;53(43):11543-6 [PMID: 25205285]
  86. Eur J Biochem. 1997 Mar 15;244(3):789-800 [PMID: 9108249]
  87. J Phys Chem B. 2018 Jan 18;122(2):527-533 [PMID: 28621937]
  88. Chem Rev. 2020 Jun 24;120(12):5107-5157 [PMID: 32129988]
  89. Biochemistry. 2012 Aug 21;51(33):6609-22 [PMID: 22827463]
  90. Chembiochem. 2022 Oct 6;23(19):e202200384 [PMID: 35925843]
  91. J Am Chem Soc. 2012 Aug 22;134(33):13749-54 [PMID: 22839751]
  92. Science. 2018 Mar 30;359(6383):1484-1489 [PMID: 29599235]
  93. J Am Chem Soc. 2018 Apr 18;140(15):5041-5044 [PMID: 29608063]
  94. Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10424-9 [PMID: 17563349]
  95. Science. 1992 Sep 18;257(5077):1653-9 [PMID: 1529353]
  96. Chemistry. 2012 Dec 14;18(51):16349-57 [PMID: 23136072]
  97. Sci Adv. 2021 May 28;7(22): [PMID: 34049880]
  98. Chem Rev. 2020 Jun 24;120(12):5082-5106 [PMID: 32176472]
  99. Science. 1993 May 7;260(5109):792-4 [PMID: 8484118]
  100. Chembiochem. 2020 Jun 15;21(12):1742-1748 [PMID: 31747483]
  101. J Biol Chem. 1994 Aug 19;269(33):20920-4 [PMID: 8063708]
  102. Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):E10521-E10530 [PMID: 30355772]
  103. Biochemistry. 1996 Jan 16;35(2):472-8 [PMID: 8555217]
  104. J Am Chem Soc. 2019 Oct 30;141(43):17150-17157 [PMID: 31577428]
  105. Angew Chem Int Ed Engl. 2021 Mar 8;60(11):5704-5707 [PMID: 33320413]
  106. Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11327-11332 [PMID: 28973920]
  107. Angew Chem Int Ed Engl. 2015 Jan 19;54(4):1219-22 [PMID: 25420957]
  108. Nat Microbiol. 2018 Mar;3(3):281-286 [PMID: 29335552]
  109. FEBS Lett. 1992 May 25;303(1):36-40 [PMID: 1317300]
  110. Nature. 2017 Mar 1;543(7643):60-64 [PMID: 28252057]
  111. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3142-5 [PMID: 4343957]
  112. Biochemistry. 1979 Oct 30;18(22):4860-9 [PMID: 228701]
  113. Astrobiology. 2020 Sep;20(9):1109-1120 [PMID: 32749859]
  114. Nature. 1992 Dec 10;360(6404):553-60 [PMID: 25989647]
  115. Trends Biochem Sci. 2004 Jul;29(7):358-63 [PMID: 15236743]
  116. Philos Trans A Math Phys Eng Sci. 2018 Jan 13;376(2110): [PMID: 29175834]
  117. J Inorg Biochem. 2022 Feb;227:111690 [PMID: 34929539]
  118. Chem Rev. 2022 Jul 27;122(14):11900-11973 [PMID: 35849738]
  119. Biochem J. 1988 Nov 15;256(1):189-96 [PMID: 2851977]
  120. Biochemistry. 1981 Sep 1;20(18):5140-6 [PMID: 6945872]
  121. mBio. 2015 Apr 14;6(2): [PMID: 25873377]
  122. Angew Chem Int Ed Engl. 2003 Apr 4;42(13):1540-3 [PMID: 12698495]
  123. J Am Chem Soc. 2002 Oct 16;124(41):12100-1 [PMID: 12371842]
  124. Biochem J. 1984 Dec 15;224(3):887-94 [PMID: 6395862]
  125. ACS Cent Sci. 2018 Oct 24;4(10):1430-1435 [PMID: 30410981]
  126. Chemistry. 2019 Oct 11;25(57):13078-13082 [PMID: 31402524]
  127. Dalton Trans. 2011 May 28;40(20):5516-27 [PMID: 21487574]
  128. JACS Au. 2020 Dec 29;1(2):119-123 [PMID: 34467276]
  129. Eur J Biochem. 2002 Mar;269(6):1650-61 [PMID: 11895435]
  130. Angew Chem Int Ed Engl. 2020 Dec 21;59(52):23626-23630 [PMID: 32915491]
  131. J Biol Chem. 2018 Jun 22;293(25):9629-9635 [PMID: 29720402]
  132. Nat Rev Microbiol. 2008 Nov;6(11):805-14 [PMID: 18820700]
  133. Science. 2002 Sep 6;297(5587):1696-700 [PMID: 12215645]
  134. Science. 2022 Aug 19;377(6608):865-869 [PMID: 35901182]
  135. Angew Chem Int Ed Engl. 2019 Mar 18;58(12):3894-3897 [PMID: 30698901]
  136. J Biol Chem. 2002 Jun 28;277(26):23469-76 [PMID: 11978793]
  137. Science. 1959 Jul 31;130(3370):245-51 [PMID: 13668555]
  138. Met Ions Life Sci. 2014;14:37-69 [PMID: 25416390]
  139. Elife. 2015 Dec 16;4:e11620 [PMID: 26673079]
  140. Biochim Biophys Acta. 1980 May 29;623(1):124-38 [PMID: 6246963]
  141. Biochemistry. 2000 Dec 5;39(48):14745-52 [PMID: 11101289]
  142. Nat Chem Biol. 2017 Sep;13(9):956-960 [PMID: 28692069]
  143. Biochemistry. 1998 Dec 15;37(50):17345-54 [PMID: 9860849]
  144. Inorg Chem. 2011 May 16;50(10):4322-6 [PMID: 21476577]
  145. Science. 1990 Nov 23;250(4984):1078-80 [PMID: 11536475]
  146. Appl Environ Microbiol. 2020 May 19;86(11): [PMID: 32198172]
  147. FEBS J. 2013 Aug;280(15):3484-90 [PMID: 23574616]
  148. Chembiochem. 2020 Jun 15;21(12):1773-1778 [PMID: 31392810]
  149. J Biol Chem. 1987 Nov 5;262(31):14945-53 [PMID: 2822707]
  150. Inorg Chem. 2011 Aug 1;50(15):7123-8 [PMID: 21718019]
  151. J Biol Chem. 1989 Apr 25;264(12):6619-28 [PMID: 2785107]
  152. J Mol Biol. 1999 Oct 1;292(4):871-91 [PMID: 10525412]
  153. Nat Chem Biol. 2017 Feb;13(2):147-149 [PMID: 27893704]
  154. Angew Chem Int Ed Engl. 2015 Nov 16;54(47):14022-5 [PMID: 26473503]
  155. Angew Chem Int Ed Engl. 2016 Dec 12;55(50):15633-15636 [PMID: 27862765]
  156. J Biol Inorg Chem. 2015 Mar;20(2):435-45 [PMID: 25491285]
  157. J Inorg Biochem. 2006 May;100(5-6):1041-52 [PMID: 16616373]
  158. Chembiochem. 2018 Apr 4;19(7):649-653 [PMID: 29363247]
  159. Chembiochem. 2021 Jan 5;22(1):151-155 [PMID: 32918851]
  160. J Biol Chem. 1978 Feb 25;253(4):1001-4 [PMID: 203578]
  161. Nat Catal. 2022 May;5(5):443-454 [PMID: 36213009]
  162. Biochemistry. 2018 Feb 6;57(5):701-710 [PMID: 29283553]
  163. Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17131-6 [PMID: 17085583]
  164. J Biol Inorg Chem. 2002 Jan;7(1-2):37-45 [PMID: 11862539]
  165. Eur J Biochem. 1987 Dec 15;169(3):457-65 [PMID: 2826146]
  166. Biochemistry. 2018 Sep 25;57(38):5497-5504 [PMID: 29965738]
  167. Science. 2012 Sep 28;337(6102):1672-5 [PMID: 23019652]
  168. Chem Asian J. 2017 Aug 17;12(16):1985-1996 [PMID: 28544649]
  169. Biochem J. 1984 Dec 15;224(3):903-9 [PMID: 6395864]
  170. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8117-20 [PMID: 11607321]
  171. J Am Chem Soc. 2016 Aug 24;138(33):10674-83 [PMID: 27529724]
  172. J Mol Biol. 2001 Mar 16;307(1):297-308 [PMID: 11243821]
  173. Angew Chem Int Ed Engl. 2016 Jul 11;55(29):8216-26 [PMID: 27206025]
  174. Chem Rev. 2020 Jun 24;120(12):5158-5193 [PMID: 31999100]
  175. Nat Commun. 2018 Aug 7;9(1):3125 [PMID: 30087338]
  176. Life (Basel). 2019 Jan 24;9(1): [PMID: 30682803]
  177. Biochemistry. 1974 May 21;13(11):2382-8 [PMID: 4364777]
  178. Eur J Biochem. 1993 Feb 15;212(1):51-61 [PMID: 8383042]
  179. Annu Rev Plant Biol. 2002;53:449-75 [PMID: 12221984]
  180. Biochem J. 1984 Dec 15;224(3):877-86 [PMID: 6395861]
  181. Angew Chem Int Ed Engl. 2015 Jul 13;54(29):8560-4 [PMID: 25926100]
  182. J Biol Chem. 1985 Sep 15;260(20):11160-73 [PMID: 2993304]
  183. J Biol Chem. 2011 Jun 3;286(22):19417-21 [PMID: 21454640]
  184. J Biol Inorg Chem. 2008 May;13(4):563-74 [PMID: 18274792]
  185. Biochem J. 1984 Dec 15;224(3):895-901 [PMID: 6395863]
  186. Biochem J. 1973 Oct;135(2):331-41 [PMID: 4357955]
  187. J Biol Inorg Chem. 2018 Oct;23(7):1049-1056 [PMID: 30141094]
  188. Phys Chem Chem Phys. 2015 Nov 28;17(44):29541-7 [PMID: 26366854]
  189. J Inorg Biochem. 2003 Jan 1;93(1-2):11-7 [PMID: 12538048]
  190. Orig Life Evol Biosph. 1996 Apr;26(2):131-50 [PMID: 11536750]
  191. Joule. 2019 Nov 20;3(11):2662-2678 [PMID: 32864580]
  192. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3249-53 [PMID: 410019]
  193. Science. 1993 Feb 12;259(5097):920-6 [PMID: 11536547]
  194. Orig Life. 1981 Dec;11(4):291-302 [PMID: 6276836]

Grants

  1. R01 GM067626/NIGMS NIH HHS
  2. R01 GM141046/NIGMS NIH HHS

MeSH Term

Nitrogenase
Hydrocarbons
Biotechnology

Chemicals

Nitrogenase
Hydrocarbons

Word Cloud

Created with Highcharts 10.0.0FTCOreactionsnitrogenaseprocessHhydrocarbonssyntheticenzymaticFT-typeenzymesmetalloclusterschemistryreactivitybiotechnologicalFischer-Tropschconvertsmixtureliquidmajorcomponentgas-to-liquidtechnologyproductionfuelsContraryenergy-demandingchemicalcatalyzedmimicsutilizeereducingequivalentsreduceCNambientconditionsCexemplifiedunderscoredstructuralelectronicpropertiesnitrogenase-associatedmetallocentersrecentstudiespointedpotentialrelevancemechanismprebioticapplicationsreviewwillprovideoverviewfeaturesassociatedfolloweddetaileddiscussionactivitiesvariousnitrogenase-derivedsystemsplausiblemechanismshighlightingversatilityuniqueprovidingperspectivesontomechanisticevolutionaryimplicationsEnzymaticFischer-Tropsch-TypeReactions

Similar Articles

Cited By