Anticancer Properties of Saccharomyces boulardii Metabolite Against Colon Cancer Cells.

Babak Pakbin, Samaneh Allahyari, Shaghayegh Pishkhan Dibazar, Amir Peymani, Mozhdeh Khajeh Haghverdi, Khadijeh Taherkhani, Maryam Javadi, Razzagh Mahmoudi
Author Information
  1. Babak Pakbin: Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran.
  2. Samaneh Allahyari: Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran.
  3. Shaghayegh Pishkhan Dibazar: Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran.
  4. Amir Peymani: Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran.
  5. Mozhdeh Khajeh Haghverdi: Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran.
  6. Khadijeh Taherkhani: Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran.
  7. Maryam Javadi: Children Growth and Development Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
  8. Razzagh Mahmoudi: Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran. r.mahmodi@yahoo.com.

Abstract

Saccharomyces cerevisiae var. boulardii has been used as a probiotic yeast in the medical and food industries. Colon cancers have been known as the third most common cancer type worldwide. Nowadays, cell-free extract and metabolites of probiotics have been employed for the treatment or prevention of different cancer diseases. This study investigates the anticancer properties of S. boulardii metabolites against human colon carcinoma. We evaluated cytotoxicity, apoptosis induction, and suppression of survivin, IL-8, and NFƙB gene expression effects of SBM against caco-2 cells after 24 and 48 h. IC concentrations of SBM were measured at 815 and 1411 µg/mL for 24 and 48 h treatments, respectively. The total proportion of apoptotic caco-2 cells treated with SBM after 24 and 48 h were calculated at 62.23 and 88.7%, respectively. Also, relative expression of survivin, IL-8, and NFƙB genes were significantly suppressed in caco-2 cells treated with SBM after 24 and 48 h. In conclusion, we found that SBM induced apoptosis, inhibited the growth rate, and suppressed the expression of the survivin, IL-8, and NFƙB genes in human colorectal cancer cells and it can be considered as a perspective supplement or drug for the treatment or prevention of colon cancer in humans.

Keywords

References

  1. Ahmed M (2020) Colon cancer: a clinician’s perspective in 2019. Gastroenterology Res 13:1 [DOI: 10.14740/gr1239]
  2. Rafiemanesh H, Pakzad R, Abedi M et al (2016) Colorectal cancer in Iran: epidemiology and morphology trends. EXCLI J 15:738 [PMID: 28337105]
  3. Chakrabarti S, Peterson CY, Sriram D et al (2020) Early stage colon cancer: current treatment standards, evolving paradigms, and future directions. World J Gastrointest Oncol 12:808 [DOI: 10.4251/wjgo.v12.i8.808]
  4. Fotheringham S, Mozolowski GA, Murray EM et al (2019) Challenges and solutions in patient treatment strategies for stage II colon cancer. Gastroenterology report 7:151–161 [DOI: 10.1093/gastro/goz006]
  5. Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M et al (2019) Mechanisms of action of probiotics. Adv Nutr 10:S49–S66 [DOI: 10.1093/advances/nmy063]
  6. Sanders M, Merenstein D, Merrifield C et al (2018) Probiotics for human use Nutrition bulletin 43:212–225 [DOI: 10.1111/nbu.12334]
  7. Stavropoulou E, Bezirtzoglou E (2020) Probiotics in medicine: a long debate. Front Immunol 11:2192 [DOI: 10.3389/fimmu.2020.02192]
  8. Trush EA, Poluektova EA, Beniashvilli AG et al (2020) The evolution of human probiotics: challenges and prospects. Probiotics and antimicrobial proteins 12:1291–1299 [DOI: 10.1007/s12602-019-09628-4]
  9. Wan MLY, Forsythe SJ, El-Nezami H (2019) Probiotics interaction with foodborne pathogens: a potential alternative to antibiotics and future challenges. Crit Rev Food Sci Nutr 59:3320–3333 [DOI: 10.1080/10408398.2018.1490885]
  10. Żółkiewicz J, Marzec A, Ruszczyński M et al (2020) Postbiotics—a step beyond pre-and probiotics. Nutrients 12:2189 [DOI: 10.3390/nu12082189]
  11. Shenderov BA, Sinitsa AV, Zakharchenko M et al (2020) Metabiotics. Springer [DOI: 10.1007/978-3-030-34167-1]
  12. Shenderov BA, Sinitsa AV, Zakharchenko MM et al (2020) Cellular metabiotics and metabolite metabiotics. In: Metabiotics. Springer, p 63–75
  13. Singh A, Vishwakarma V, Singhal B (2018) Metabiotics: the functional metabolic signatures of probiotics: current state-of-art and future research priorities—metabiotics: probiotics effector molecules. Adv Biosci Biotechnol 9:147 [DOI: 10.4236/abb.2018.94012]
  14. Pais P, Almeida V, Yılmaz M et al (2020) Saccharomyces boulardii: what makes it tick as successful probiotic? J Fungi 6:78 [DOI: 10.3390/jof6020078]
  15. Imre A, Kovács R, Pázmándi K et al (2021) Virulence factors and in-host selection on phenotypes in infectious probiotic yeast isolates (Saccharomyces ‘boulardii’). J Fungi 7:746 [DOI: 10.3390/jof7090746]
  16. Pakbin B, Dibazar SP, Allahyari S et al (2022) Anticancer properties of probiotic Saccharomyces boulardii supernatant on human breast cancer cells. Probiotics Antimicrob 1–9
  17. Allahyari S, Dibazar SP, Pakbin B et al (2020) Anticancer effect of probiotic Saccharomyces boulardii supernatant on human caco-2 cells: an in vitro study. Carpathian J Food Sci Technol 12
  18. Ashrafi Tamai I, Mohammadzadeh A, Zahraei Salehi T et al (2021) Investigation of antimicrobial susceptibility and virulence factor genes in Trueperella pyogenes isolated from clinical mastitis cases of dairy cows. Food Sci Nutr 9:4529–4538 [DOI: 10.1002/fsn3.2431]
  19. Fu J, Liu J, Wen X et al (2022) Unique probiotic properties and bioactive metabolites of Saccharomyces boulardii. Probiotics Antimicrob 1–16
  20. An Z, Li J, Yu J et al (2019) Neutrophil extracellular traps induced by IL-8 aggravate atherosclerosis via activation NF-κB signaling in macrophages. Cell Cycle 18:2928–2938 [DOI: 10.1080/15384101.2019.1662678]
  21. Rao X, Huang X, Zhou Z et al (2013) An improvement of the 2ˆ (–delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostatistics, bioinformatics and biomathematics 3:71 [PMID: 25558171]
  22. Azevedo L, Chagas-Paula DA, Kim H et al (2016) White mold (Sclerotinia sclerotiorum), friend or foe: cytotoxic and mutagenic activities in vitro and in vivo. Food Res Int 80:27–35 [DOI: 10.1016/j.foodres.2015.11.029]
  23. Geng R, Tan X, Wu J et al (2017) RNF183 promotes proliferation and metastasis of colorectal cancer cells via activation of NF-κB-IL-8 axis. Cell Death Dis 8:e2994–e2994 [DOI: 10.1038/cddis.2017.400]
  24. Zein R, Alghoraibi I, Soukkarieh C et al (2020) In-vitro anticancer activity against Caco-2 cell line of colloidal nano silver synthesized using aqueous extract of Eucalyptus camaldulensis leaves. Heliyon 6:e04594 [DOI: 10.1016/j.heliyon.2020.e04594]
  25. Fan X, Guo H, Teng C et al (2022) Anti-colon cancer activity of novel peptides isolated from in vitro digestion of quinoa protein in caco-2 cells. Foods 11:194 [DOI: 10.3390/foods11020194]
  26. Awadelkareem AM, Al-Shammari E, Elkhalifa AEO et al (2022) Phytochemical and in silico ADME/Tox analysis of Eruca sativa extract with antioxidant, antibacterial and anticancer potential against Caco-2 and HCT-116 colorectal carcinoma cell lines. Molecules 27:1409 [DOI: 10.3390/molecules27041409]
  27. Nozari S, Faridvand Y, Etesami A et al (2019) Potential anticancer effects of cell wall protein fractions from Lactobacillus paracasei on human intestinal Caco-2 cell line. Lett Appl Microbiol 69:148–154 [PMID: 31278768]
  28. Nowak A, Zakłos-Szyda M, Rosicka-Kaczmarek J et al (2022) Anticancer potential of post-fermentation media and cell extracts of probiotic strains: an in vitro study. Cancers 14:1853 [DOI: 10.3390/cancers14071853]
  29. Adiyoga R, Arief II, Budiman C et al (2022) In vitro anticancer potentials of Lactobacillus plantarum IIA-1A5 and Lactobacillus acidophilus IIA-2B4 extracts against WiDr human colon cancer cell line. Food Sci Technol 42
  30. Datta S, Timson DJ, Annapure US (2017) Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii. J Sci Food Agric 97:3039–3049 [DOI: 10.1002/jsfa.8147]
  31. Vahed SZ, Barzegari A, Saadat YR et al (2017) Leuconostoc mesenteroides-derived anticancer pharmaceuticals hinder inflammation and cell survival in colon cancer cells by modulating NF-κB/AKT/PTEN/MAPK pathways. Biomed Pharmacother 94:1094–1100 [DOI: 10.1016/j.biopha.2017.08.033]
  32. Sharma M, Chandel D, Shukla G (2020) Antigenotoxicity and cytotoxic potentials of metabiotics extracted from isolated probiotic, Lactobacillus rhamnosus MD 14 on Caco-2 and HT-29 human colon cancer cells. Nutr Cancer 72:110–119 [DOI: 10.1080/01635581.2019.1615514]
  33. Sharma M, Shukla G (2020) Administration of metabiotics extracted from probiotic Lactobacillus rhamnosus MD 14 inhibit experimental colorectal carcinogenesis by targeting Wnt/β-catenin pathway. Front Oncol 10:746 [DOI: 10.3389/fonc.2020.00746]
  34. Pourbaferani M, Modiri S, Norouzy A et al (2021) A newly characterized potentially probiotic strain, Lactobacillus brevis MK05, and the toxicity effects of its secretory proteins against MCF-7 breast cancer cells. Probiotics Antimicrob 13:982–992 [DOI: 10.1007/s12602-021-09766-8]
  35. Kim H-J, An J, Ha E-M (2022) Lactobacillus plantarum-derived metabolites sensitize the tumor-suppressive effects of butyrate by regulating the functional expression of SMCT1 in 5-FU-resistant colorectal cancer cells. J Microbiol 60:100–117 [DOI: 10.1007/s12275-022-1533-1]
  36. Oh T-I, Lee Y-M, Nam T-J et al (2017) Fascaplysin exerts anti-cancer effects through the downregulation of survivin and HIF-1α and inhibition of VEGFR2 and TRKA. Int J Mol Sci 18:2074 [DOI: 10.3390/ijms18102074]
  37. Sougioultzis S, Simeonidis S, Bhaskar KR et al (2006) Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-κB-mediated IL-8 gene expression. Biochem Biophys Res Commun 343:69–76 [DOI: 10.1016/j.bbrc.2006.02.080]

MeSH Term

Humans
Saccharomyces cerevisiae
Saccharomyces boulardii
Survivin
Caco-2 Cells
Interleukin-8
Probiotics
Colonic Neoplasms

Chemicals

Survivin
Interleukin-8

Word Cloud

Created with Highcharts 10.0.0SBMboulardiicancercells2448 hSaccharomycessurvivinIL-8NFƙBexpressioncaco-2ColonmetabolitestreatmentpreventionstudypropertieshumancolonapoptosisrespectivelytreatedgenessuppressedAnticancercerevisiaevarusedprobioticyeastmedicalfoodindustriescancersknownthirdcommontypeworldwideNowadayscell-freeextractprobioticsemployeddifferentdiseasesinvestigatesanticancerScarcinomaevaluatedcytotoxicityinductionsuppressiongeneeffectsICconcentrationsmeasured8151411 µg/mLtreatmentstotalproportionapoptoticcalculated6223887%AlsorelativesignificantlyconclusionfoundinducedinhibitedgrowthratecolorectalcanconsideredperspectivesupplementdrughumansPropertiesMetaboliteCancerCellsvitroMetabiotic

Similar Articles

Cited By