Antibiotic Toxicity Isolated and as Binary Mixture to Freshwater Algae : Growth Inhibition, Prediction Model, and Environmental Risk Assessment.
Fang Chang, Malan Yi, Huiting Li, Jiangnan Wang, Xuefeng Zhao, Xiaoyue Hu, Qianju Qi
Author Information
Fang Chang: Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China.
Malan Yi: Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China.
Huiting Li: Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China. ORCID
Jiangnan Wang: Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China.
Xuefeng Zhao: Hanjiang Bureau of Hydrology and Water Resources, Bureau of Hydrology, Changjiang Water Resources Commission, Xiangyang 441000, China.
Xiaoyue Hu: Hanjiang Bureau of Hydrology and Water Resources, Bureau of Hydrology, Changjiang Water Resources Commission, Xiangyang 441000, China.
Qianju Qi: Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China.
中文译文
English
Antibiotics in aqueous environments can have extremely adverse effects on non-targeted organisms. However, many research projects have only focused on the toxicological evaluation of individual antibiotics in various environments. In the present work, individual and binary mixture toxicity experiments have been conducted with the model organism Raphidocelis subcapitata (R. subcapitata), and a mixture concentration-response curve was established and contrasted with the estimated effects on the basis of both the concentration addition (CA) and the independent action (IA) models. In addition, different risk assessment methods were used and compared to evaluate the environmental risk of binary mixtures. The toxic ranking of the selected antibiotics to R. subcapitata was erythromycin (ERY) > sulfamethoxazole (SMX) > sulfamethazine (SMZ). In general, the conclusion of this study is that the adverse effects of binary mixtures are higher than the individual antibiotics. The CA model and RQSTU are more suitable for toxicity prediction and risk assessment of binary mixtures. This study reveals the potential ecological risks that antibiotics and their mixtures may pose to water ecosystems, thus providing scientific information for environmental quality regulation.
J Hazard Mater. 2019 Jan 5;361:103-110
[PMID: 30176408 ]
Ecotoxicol Environ Saf. 2016 Jul;129:189-98
[PMID: 27045919 ]
Chemosphere. 2017 Jun;176:183-191
[PMID: 28260658 ]
Environ Sci Technol. 2015 Dec 15;49(24):14614-24
[PMID: 26516785 ]
Ecotoxicol Environ Saf. 2021 Jan 1;207:111153
[PMID: 32896819 ]
Ecotoxicol Environ Saf. 2021 Jan 1;207:111554
[PMID: 33254411 ]
Environ Toxicol Pharmacol. 2020 May;76:103347
[PMID: 32058321 ]
Aquat Toxicol. 2021 Jan;230:105706
[PMID: 33302172 ]
Sci Total Environ. 2005 Jun 15;346(1-3):87-98
[PMID: 15993685 ]
Antibiotics (Basel). 2021 May 13;10(5):
[PMID: 34068228 ]
Environ Int. 2020 Jun;139:105690
[PMID: 32278198 ]
Sci Total Environ. 2014 Jan 1;466-467:421-38
[PMID: 23933429 ]
Front Microbiol. 2021 Jul 19;12:541451
[PMID: 34349730 ]
Chemosphere. 2017 Oct;184:137-147
[PMID: 28586654 ]
SAR QSAR Environ Res. 2020 Sep;31(9):655-675
[PMID: 32799684 ]
J Hazard Mater. 2022 Oct 5;439:129628
[PMID: 35905608 ]
Mar Pollut Bull. 2017 Jan 30;114(2):751-758
[PMID: 27823828 ]
Ecotoxicol Environ Saf. 2015 Mar;113:72-8
[PMID: 25483375 ]
Sci Total Environ. 2019 Aug 15;678:301-308
[PMID: 31075597 ]
Environ Toxicol Chem. 2008 May;27(5):1201-8
[PMID: 18419195 ]
Plants (Basel). 2021 Mar 21;10(3):
[PMID: 33801134 ]
Chemosphere. 2020 Nov;259:127407
[PMID: 32593821 ]
Environ Toxicol Chem. 2020 Dec;39(12):2552-2559
[PMID: 32897547 ]
J Hazard Mater. 2016 May 5;308:179-86
[PMID: 26835894 ]
Environ Sci Pollut Res Int. 2018 Mar;25(7):6122-6134
[PMID: 28620858 ]
Sci Total Environ. 2019 May 20;666:1273-1282
[PMID: 30970492 ]
Environ Sci Technol. 2015 Apr 7;49(7):4636-45
[PMID: 25742325 ]
Aquat Toxicol. 2019 Mar;208:179-186
[PMID: 30682620 ]
Sci Total Environ. 2020 Oct 10;738:140248
[PMID: 32806369 ]
Chemosphere. 2018 Mar;194:821-827
[PMID: 29268103 ]
Water Sci Technol. 2021 Oct;84(7):1623-1634
[PMID: 34662301 ]
Sci Total Environ. 2019 May 10;664:240-248
[PMID: 30743118 ]
J Toxicol. 2014;2014:248461
[PMID: 25214834 ]
Ecotoxicol Environ Saf. 2021 Jan 1;207:111264
[PMID: 32911184 ]
Sci Total Environ. 2022 May 15;821:153350
[PMID: 35077797 ]
Environ Int. 2020 Mar;136:105449
[PMID: 31924580 ]
Sci Rep. 2018 May 23;8(1):8058
[PMID: 29795299 ]
Chemosphere. 2020 Aug;253:126722
[PMID: 32289608 ]
AAPS J. 2016 Jul;18(4):804-13
[PMID: 27044369 ]
Sci Rep. 2020 May 19;10(1):8243
[PMID: 32427937 ]
Toxics. 2019 Mar 19;7(1):
[PMID: 30893892 ]
Environ Pollut. 2019 May;248:133-144
[PMID: 30784832 ]
Ecotoxicol Environ Saf. 2019 Mar;169:950-959
[PMID: 30597796 ]
Bioresour Technol. 2016 Apr;205:183-90
[PMID: 26826958 ]
Toxics. 2020 Aug 17;8(3):
[PMID: 32824441 ]
Chemosphere. 2018 May;198:122-129
[PMID: 29421720 ]
Aquat Toxicol. 2019 Jul;212:138-145
[PMID: 31125791 ]
Wiley Interdiscip Rev Comput Mol Sci. 2016 Mar;6(2):147-172
[PMID: 27066112 ]
Environ Sci Pollut Res Int. 2018 Jan;25(1):736-748
[PMID: 29063395 ]
Mol Ecol. 2017 Jan;26(2):689-701
[PMID: 27864907 ]
Sci Total Environ. 2022 Sep 13;854:158723
[PMID: 36108830 ]
Int J Environ Res Public Health. 2022 Jul 15;19(14):
[PMID: 35886459 ]
J Hazard Mater. 2019 May 15;370:138-146
[PMID: 30049519 ]
Environ Sci Pollut Res Int. 2019 Jan;26(1):544-558
[PMID: 30406596 ]
Ecotoxicology. 2016 May;25(4):745-58
[PMID: 26910533 ]
NO. 19DZ1204303; NO. TKS20220204/The research project of Shanghai Science and Technology Commission; he National Nonprofit Institute Research Grants of TIWTE