The widely distributed soft coral Xenia umbellata exhibits high resistance against phosphate enrichment and temperature increase.

Selma D Mezger, Annabell Klinke, Arjen Tilstra, Yusuf C El-Khaled, Bianca Thobor, Christian Wild
Author Information
  1. Selma D Mezger: Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 6, 28359, Bremen, Germany. mezger@uni-bremen.de.
  2. Annabell Klinke: Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 6, 28359, Bremen, Germany.
  3. Arjen Tilstra: Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 6, 28359, Bremen, Germany.
  4. Yusuf C El-Khaled: Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 6, 28359, Bremen, Germany.
  5. Bianca Thobor: Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 6, 28359, Bremen, Germany.
  6. Christian Wild: Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 6, 28359, Bremen, Germany.

Abstract

Both global and local factors affect coral reefs worldwide, sometimes simultaneously. An interplay of these factors can lead to phase shifts from hard coral dominance to algae or other invertebrates, particularly soft corals. However, most studies have targeted the effects of single factors, leaving pronounced knowledge gaps regarding the effects of combined factors on soft corals. Here, we investigated the single and combined effects of phosphate enrichment (1, 2, and 8 μM) and seawater temperature increase (26 to 32 °C) on the soft coral Xenia umbellata by quantifying oxygen fluxes, protein content, and stable isotope signatures in a 5-week laboratory experiment. Findings revealed no significant effects of temperature increase, phosphate enrichment, and the combination of both factors on oxygen fluxes. However, regardless of the phosphate treatment, total protein content and carbon stable isotope ratios decreased significantly by 62% and 7% under temperature increase, respectively, suggesting an increased assimilation of their energy reserves. Therefore, we hypothesize that heterotrophic feeding may be important for X. umbellata to sustain their energy reserves under temperature increase, highlighting the advantages of a mixotrophic strategy. Overall, X. umbellata shows a high tolerance towards changes in global and local factors, which may explain their competitive advantage observed at many Indo-Pacific reef locations.

References

  1. Curr Biol. 2018 Aug 20;28(16):2570-2580.e6 [PMID: 30100341]
  2. Nature. 1989 Oct 12;341(6242):516-8 [PMID: 11536614]
  3. Science. 1994 Sep 9;265(5178):1547-51 [PMID: 17801530]
  4. PeerJ. 2017 Oct 11;5:e3802 [PMID: 29038747]
  5. PLoS One. 2013 Apr 22;8(4):e62091 [PMID: 23630625]
  6. Trends Microbiol. 2015 Aug;23(8):490-7 [PMID: 25868684]
  7. Conserv Biol. 2016 Aug;30(4):706-15 [PMID: 27029403]
  8. Proc Natl Acad Sci U S A. 2021 Feb 2;118(5): [PMID: 33500354]
  9. Glob Chang Biol. 2022 Mar;28(6):1956-1971 [PMID: 34951504]
  10. J Exp Biol. 2013 Jul 15;216(Pt 14):2665-74 [PMID: 23531826]
  11. Nature. 2017 May 31;546(7656):82-90 [PMID: 28569801]
  12. Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17442-6 [PMID: 18988740]
  13. Adv Mar Biol. 2003;46:183-223 [PMID: 14601413]
  14. Glob Chang Biol. 2020 Oct;26(10):5646-5660 [PMID: 32713061]
  15. Environ Microbiol. 2016 Sep;18(8):2620-33 [PMID: 27234003]
  16. J Exp Biol. 2000 Nov;203(Pt 22):3445-57 [PMID: 11044383]
  17. Proc Biol Sci. 2015 Nov 22;282(1819): [PMID: 26582020]
  18. Mar Pollut Bull. 2018 May;130:84-94 [PMID: 29866574]
  19. Mar Pollut Bull. 2005 Feb;50(2):125-46 [PMID: 15737355]
  20. Mar Pollut Bull. 2018 Jun;131(Pt A):701-711 [PMID: 29886997]
  21. PLoS One. 2013;8(3):e58581 [PMID: 23536798]
  22. Ecology. 2018 Feb;99(2):501 [PMID: 29155453]
  23. Proc Biol Sci. 2015 Nov 7;282(1818):20152257 [PMID: 26511052]
  24. J Exp Biol. 2012 Oct 15;215(Pt 20):3672-9 [PMID: 22811248]
  25. Mar Pollut Bull. 2017 May 15;118(1-2):180-187 [PMID: 28242282]
  26. PLoS One. 2013;8(1):e54399 [PMID: 23349876]
  27. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  28. Mar Pollut Bull. 2019 Nov;148:85-96 [PMID: 31422307]
  29. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10302-5 [PMID: 11607337]
  30. PLoS One. 2013 May 02;8(5):e63267 [PMID: 23658817]
  31. Nature. 2004 Mar 4;428(6978):66-70 [PMID: 14999280]
  32. ISME J. 2022 Apr;16(4):1110-1118 [PMID: 34857934]
  33. Sci Rep. 2020 Jun 1;10(1):8897 [PMID: 32483234]
  34. PeerJ. 2021 Jul 27;9:e11663 [PMID: 34395065]
  35. Proc Natl Acad Sci U S A. 2013 May 28;110(22):8767-8 [PMID: 23671104]
  36. Mar Pollut Bull. 2003 Aug;46(8):1024-31 [PMID: 12907196]
  37. Sci Rep. 2016 Aug 17;6:31768 [PMID: 27531136]
  38. Nat Rev Microbiol. 2007 May;5(5):355-62 [PMID: 17384666]
  39. Proc Natl Acad Sci U S A. 2013 May 28;110(22):8978-83 [PMID: 23610420]
  40. PeerJ. 2020 Apr 2;8:e8737 [PMID: 32274261]
  41. Mar Pollut Bull. 2004 Aug;49(4):344-53 [PMID: 15341829]
  42. Sci Rep. 2022 Oct 6;12(1):16788 [PMID: 36202937]
  43. PLoS One. 2013 Jun 19;8(6):e66992 [PMID: 23840570]
  44. PLoS One. 2011;6(9):e25024 [PMID: 21949839]
  45. ISME J. 2014 Nov;8(11):2272-9 [PMID: 24830827]
  46. ISME J. 2018 Mar;12(3):921-930 [PMID: 29379177]
  47. PeerJ. 2016 Nov 29;4:e2625 [PMID: 27904802]
  48. Science. 2003 Aug 15;301(5635):929-33 [PMID: 12920289]
  49. Sci Rep. 2021 Jun 3;11(1):11820 [PMID: 34083565]
  50. PeerJ. 2020 Jun 22;8:e9182 [PMID: 32607278]
  51. Proc R Soc Lond B Biol Sci. 1979 Apr 11;204(1155):131-9 [PMID: 36618]
  52. Glob Chang Biol. 2014 Mar;20(3):681-97 [PMID: 24166756]

MeSH Term

Animals
Anthozoa
Phosphates
Temperature
Coral Reefs
Oxygen

Chemicals

Phosphates
Oxygen

Word Cloud

Created with Highcharts 10.0.0factorstemperatureincreasecoralsofteffectsphosphateumbellataenrichmentgloballocalcoralsHoweversinglecombinedXeniaoxygenfluxesproteincontentstableisotopeenergyreservesmayXhighaffectreefsworldwidesometimessimultaneouslyinterplaycanleadphaseshiftsharddominancealgaeinvertebratesparticularlystudiestargetedleavingpronouncedknowledgegapsregardinginvestigated128 μMseawater2632 °Cquantifyingsignatures5-weeklaboratoryexperimentFindingsrevealedsignificantcombinationregardlesstreatmenttotalcarbonratiosdecreasedsignificantly62%7%respectivelysuggestingincreasedassimilationThereforehypothesizeheterotrophicfeedingimportantsustainhighlightingadvantagesmixotrophicstrategyOverallshowstolerancetowardschangesexplaincompetitiveadvantageobservedmanyIndo-Pacificreeflocationswidelydistributedexhibitsresistance

Similar Articles

Cited By