On a three-dimensional model for the description of the passive characteristics of skeletal muscle tissue.

Fabian Walter, Robert Seydewitz, Philipp Mitterbach, Tobias Siebert, Markus Böl
Author Information
  1. Fabian Walter: Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, D-38106, Braunschweig, Germany.
  2. Robert Seydewitz: Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, D-38106, Braunschweig, Germany.
  3. Philipp Mitterbach: Mechanical Engineering, Eindhoven University of Technology, NLD-5612, Eindhoven, The Netherlands.
  4. Tobias Siebert: Institute of Sport and Motion Science, University of Stuttgart, D-70569, Stuttgart, Germany.
  5. Markus Böl: Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, D-38106, Braunschweig, Germany. m.boel@tu-braunschweig.de.

Abstract

In this work, a three-dimensional model was developed to describe the passive mechanical behaviour of anisotropic skeletal muscle tissue. To validate the model, orientation-dependent axial ([Formula: see text], [Formula: see text], [Formula: see text]) and semi-confined compression experiments (mode I, II, III) were performed on soleus muscle tissue from rabbits. In the latter experiments, specimen deformation is prescribed in the loading direction and prevented in an additional spatial direction, fibre compression at [Formula: see text] (mode I), fibre elongation at [Formula: see text] (mode II) and a neutral state of the fibres at [Formula: see text] where their length is kept constant (mode III). Overall, the model can adequately describe the mechanical behaviour with a relatively small number of model parameters. The stiffest tissue response during orientation-dependent axial compression ([Formula: see text] kPa) occurs when the fibres are oriented perpendicular to the loading direction ([Formula: see text]) and are thus stretched during loading. Semi-confined compression experiments yielded the stiffest tissue ([Formula: see text] kPa) in mode II when the muscle fibres are stretched. The extensive data set collected in this study allows to study the different error measures depending on the deformation state or the combination of deformation states.

Keywords

References

  1. Ambrosi D, Pezzuto S (2012) Active stress versus active strain in mechanobiology: constitutive issues. J Elast 107(2):199–212 [DOI: 10.1007/s10659-011-9351-4]
  2. Baker JE, Brosseau C, Joel PB, Warshaw DM (2002) The biochemical kinetics underlying actin movement generated by one and many skeletal muscle myosin molecules. Biophys J 82(4):2134–2147 [DOI: 10.1016/S0006-3495(02)75560-4]
  3. Balzani D, Neff P, Schröder J, Holzapfel GA (2006) A polyconvex framework for soft biological tissues. adjustment to experimental data. Int J Solids Struct 43(20):6052–6070 [DOI: 10.1016/j.ijsolstr.2005.07.048]
  4. Bartoo ML, Linke WA, Pollack GH (1997) Basis of passive tension and stiffness in isolated rabbit myofibrils. Am J Physiol–Cell Physiol 273(1):C266–C276 [DOI: 10.1152/ajpcell.1997.273.1.C266]
  5. Baskin RJ, Paolini PJ (1967) Volume change and pressure development in muscle during contraction. Am J Phys Legacy Content 213(4):1025–1030 [DOI: 10.1152/ajplegacy.1967.213.4.1025]
  6. Blemker SS, Pinsky PM, Delp SL (2005) A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J Biomech 38(4):657–665 [DOI: 10.1016/j.jbiomech.2004.04.009]
  7. Böl M, Kruse R, Ehret AE, Leichsenring K, Siebert T (2012) Compressive properties of passive skeletal muscle – The impact of precise sample geometry on parameter identification in inverse finite element analysis. J Biomech 45(15):2673–2679 [DOI: 10.1016/j.jbiomech.2012.08.023]
  8. Böl M, Leichsenring K, Weichert C, Sturmat M, Schenk P, Blickhan R, Siebert T (2013) Three–dimensional surface geometries of the rabbit soleus muscle during contraction: input for biomechanical modelling and its validation. Biomech Model Mechanobiol 12(6):1205–1220 [DOI: 10.1007/s10237-013-0476-1]
  9. Böl M, Ehret AE, Leichsenring K, Weichert C, Kruse R (2014) On the anisotropy of skeletal muscle tissue under compression. Acta Biomater 10(7):3225–3234 [DOI: 10.1016/j.actbio.2014.03.003]
  10. Böl M, Ehret AE, Leichsenring K, Ernst M (2015) Tissue–scale anisotropy and compressibility of tendon in semi–confined compression tests. J Biomech 48(6):1092–1098 [DOI: 10.1016/j.jbiomech.2015.01.024]
  11. Böl M, Leichsenring K, Ernst M, Wick C, Blickhan R, Siebert T (2015) Novel microstructural findings in M. plantaris and their impact during active and passive loading at the macro level. J Mech Behav Biomed Mater 51:25–39 [DOI: 10.1016/j.jmbbm.2015.06.026]
  12. Böl M, Leichsenring K, Ernst M, Ehret AE (2016) Long–term mechanical behaviour of skeletal muscle tissue in semi–confined compression experiments. J Mech Behav Biomed Mater 63:115–124 [DOI: 10.1016/j.jmbbm.2016.06.012]
  13. Böl M, Iyer R, Dittmann J, Garcés–Schröder M, Dietzel A (2019) Investigating the passive mechanical behaviour of skeletal muscle fibres: micromechanical experiments and Bayesian hierarchical modelling. Acta Biomater 92:277–289 [DOI: 10.1016/j.actbio.2019.05.015]
  14. Böl M, Iyer R, Garcés–Schröder M, Kohn S, Dietzel A (2020) Mechano–geometrical skeletal muscle fibre characterisation under cyclic and relaxation loading. J Mech Behav Biomed Mater 110:104001 [DOI: 10.1016/j.jmbbm.2020.104001]
  15. Böl M, Kohn S, Leichsenring K, Morales–Orcajo E, Ehret AE (2022) On multiscale tension–compression asymmetry in skeletal muscle. Acta Biomater 96:1–2
  16. Brown SHM, Carr JA, Ward SR, Lieber RL (2012) Passive mechanical properties of rat abdominal wall muscles suggest an important role of the extracellular connective tissue matrix. J Orthop Res 30(8):1321–1326 [DOI: 10.1002/jor.22068]
  17. Calvo B, Ramírez A, Alonso A, Grasa J, Soteras F, Osta R, Muñoz MJ (2010) Passive nonlinear elastic behaviour of skeletal muscle: experimental results and model formulation. J Biomech 43(2):318–325 [DOI: 10.1016/j.jbiomech.2009.08.032]
  18. Chagnon G, Rebouah M, Favier D (2015) Hyperelastic energy densities for soft biological tissues: a review. J Elast 120(2):129–160 [DOI: 10.1007/s10659-014-9508-z]
  19. Cooper KE, Cranston WI, Honour AJ (1965) Effects of intraventricular and intrahypothalamic injection of noradrenaline and 5–HT on body temperature in conscious rabbits. J Physiol 181(4):852–864 [DOI: 10.1113/jphysiol.1965.sp007801]
  20. de Souza Leite F, Minozzo FC, Altman D, Rassier DE (2017) Microfluidic perfusion shows intersarcomere dynamics within single skeletal muscle myofibrils. Proc Natl Acad Sci 114(33):8794–8799 [DOI: 10.1073/pnas.1700615114]
  21. Ehret AE, Itskov M (2007) A polyconvex hyperelastic model for fiber–reinforced materials in application to soft tissues. J Mater Sci 42(21):8853–8863 [DOI: 10.1007/s10853-007-1812-6]
  22. Ehret AE, Böl M, Itskov M (2011) A continuum constitutive model for the active behaviour of skeletal muscle. J Mech Phys Solids 59(3):625–636 [DOI: 10.1016/j.jmps.2010.12.008]
  23. Federico S, Gasser TC (2010) Nonlinear elasticity of biological tissues with statistical fibre orientation. J R Soc Interface 7(47):955–966 [DOI: 10.1098/rsif.2009.0502]
  24. Flory PJ (1961) Thermodynamic relations for high elastic materials. Trans Faraday Soc 57:829–838 [DOI: 10.1039/tf9615700829]
  25. Fridén J, Lieber RL (2003) Spastic muscle cells are shorter and stiffer than normal cells. Muscle Nerve Off J Am Assoc Electrodiagn Med 27(2):157–164 [DOI: 10.1002/mus.10247]
  26. Gasser TC (2018) Vascular tissue biomechanics : constitutive modeling of the arterial wall. Elsevier, Heidelberg, pp 265–274
  27. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6):15–35 [DOI: 10.1098/rsif.2005.0073]
  28. Gillies AR, Lieber RL (2011) Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44(3):318–331 [DOI: 10.1002/mus.22094]
  29. Gras LL, Mitton D, Viot P, Laporte S (2012) Hyper–elastic properties of the human sternocleidomastoideus muscle in tension. J Mech Behav Biomed Mater 15:131–140 [DOI: 10.1016/j.jmbbm.2012.06.013]
  30. Guccione JM, Moonly SM, Wallace AW, Ratcliffe MB (2001) Residual stress produced by ventricular volume reduction surgery has little effect on ventricular function and mechanics: a finite element model study. J Thorac Cardiovasc Surg 122(3):592–599 [DOI: 10.1067/mtc.2001.114939]
  31. Haeger RM, Rassier DE (2020) Force enhancement after stretch of isolated myofibrils is increased by sarcomere length non–uniformities. Sci Rep 10(1):21590 [DOI: 10.1038/s41598-020-78457-1]
  32. Haeger R, de Souza Leite F, Rassier DE (2020) Sarcomere length non–uniformities dictate force production along the descending limb of the force–length relation. Proc Royal Soc B Biol Sci 287(1937):20202133 [DOI: 10.1098/rspb.2020.2133]
  33. Hashemi SS, Asgari M, Rasoulian A (2020) An experimental study of nonlinear rate–dependent behaviour of skeletal muscle to obtain passive mechanical properties. Proc Inst Mech Eng 234(6):590–602 [DOI: 10.1177/0954411920909705]
  34. Holzapfel GA, Ogden RW (2010) Constitutive modelling of arteries. Proc Royal Soc A Math Phys Eng Sci 466(2118):1551–1597
  35. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solids 61(1):1–48
  36. Humphrey JD, Strumpf RK, Yin FCP (1990) Determination of a constitutive relation for passive myocardium: i. a new functional form. J Biomech Eng 112(3):333–339 [DOI: 10.1115/1.2891193]
  37. Johannson T, Meier P, Blickhan R (2000) A finite–element model for the mechanical analysis of skeletal muscles. J Theor Biol 206(1):131–149 [DOI: 10.1006/jtbi.2000.2109]
  38. Kohn S, Leichsenring K, Kuravi R, Ehret AE, Böl M (2021) Direct measurement of the direction–dependent mechanical behaviour of skeletal muscle extracellular matrix. Acta Biomater 122:249–262 [DOI: 10.1016/j.actbio.2020.12.050]
  39. Kuravi R, Leichsenring K, Trostorf R, Morales–Orcajo E, Böl M, Ehret AE (2021) Predicting muscle tissue response from calibrated component models and histology–based finite element models. J Mech Behav Biomed Mater 117:104375 [DOI: 10.1016/j.jmbbm.2021.104375]
  40. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim 9(1):112–147 [DOI: 10.1137/S1052623496303470]
  41. Lee EJ, Jang HC, Koo KH, Kim HK, Lim JY (2020) Mechanical properties of single muscle fibers: understanding poor muscle quality in older adults with diabetes. Ann Geriatric Med Res 24(4):267–273 [DOI: 10.4235/agmr.20.0078]
  42. Leichsenring K, Viswanathan A, Kutschke S, Siebert T, Böl M (2021) Age–dependent mechanical and microstructural properties of the rabbit soleus muscle. Acta Biomater 134:453–465 [DOI: 10.1016/j.actbio.2021.07.066]
  43. Li Y, Hessel AL, Unger A, Ing D, Recker J, Koser F, Freundt JK, Linke WA (2020) Graded titin cleavage progressively reduces tension and uncovers the source of A–band stability in contracting muscle. Elife 9:e64107 [DOI: 10.7554/eLife.64107]
  44. Lieber RL, Ward SR (2013) Cellular mechanisms of tissue fibrosis. 4. structural and functional consequences of skeletal muscle fibrosis. Am J Physiol Cell Physiol 305(3):C241–C252 [DOI: 10.1152/ajpcell.00173.2013]
  45. Lieber RL, Runesson E, Einarsson F, Fridén J (2003) Inferior mechanical properties of spastic muscle bundles due to hypertrophic but compromised extracellular matrix material. Muscle Nerve 28(4):464–471 [DOI: 10.1002/mus.10446]
  46. Linder–Ganz E, Yarnitzky G, Yizhar Z, Siev–Ner I, Gefen A (2009) Real–time finite element monitoring of sub–dermal tissue stresses in individuals with spinal cord injury: toward prevention of pressure ulcers. Ann Biomed Eng 37(2):387–400 [DOI: 10.1007/s10439-008-9607-8]
  47. Linke WA, Ivemeyer M, Mundel P, Stockmeier MR, Kolmerer B (1998) Nature of PEVK–titin elasticity in skeletal muscle. Proc Natl Acad Sci 95(14):8052–8057 [DOI: 10.1073/pnas.95.14.8052]
  48. Marston S (2022) Force measurements from myofibril to filament. Front Physiol. https://doi.org/10.3389/fphys.2021.817036 [DOI: 10.3389/fphys.2021.817036]
  49. Martins JA, Pires EB, Salvado R, Dinis PB (1998) A numerical model of passive and active behavior of skeletal muscles. Comput Methods Appl Mech Eng 151(3):419–433 [DOI: 10.1016/S0045-7825(97)00162-X]
  50. Mathewson MA, Chambers HG, Girard PJ, Tenenhaus M, Schwartz AK, Lieber RL (2014) Stiff muscle fibers in calf muscles of patients with cerebral palsy lead to high passive muscle stiffness. J Orthop Res 32(12):1667–1674 [DOI: 10.1002/jor.22719]
  51. Meyer GA, Lieber RL (2011) Elucidation of extracellular matrix mechanics from muscle fibers and fiber bundles. J Biomech 44(4):771–773 [DOI: 10.1016/j.jbiomech.2010.10.044]
  52. Moerman KM, Simms CK, Nagel T (2016) Control of tension–compression asymmetry in Ogden hyperelasticity with application to soft tissue modelling. J Mech Behav Biomed Mater 56:218–228 [DOI: 10.1016/j.jmbbm.2015.11.027]
  53. Mohammadkhah M, Murphy P, Simms CK (2016) The in vitro passive elastic response of chicken pectoralis muscle to applied tensile and compressive deformation. J Mech Behav Biomed Mater 62:468–480 [DOI: 10.1016/j.jmbbm.2016.05.021]
  54. Morrow DA, Haut Donahue TL, Odegard GM, Kaufman KR (2010) Transversely isotropic tensile material properties of skeletal muscle tissue. J Mech Behav Biomed Mater 3(1):124–129 [DOI: 10.1016/j.jmbbm.2009.03.004]
  55. Mutungi G, Ranatunga KW (1996) The viscous, viscoelastic and elastic characteristics of resting fast and slow mammalian (rat) muscle fibres. J Physiol 496(3):827–836 [DOI: 10.1113/jphysiol.1996.sp021730]
  56. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313 [DOI: 10.1093/comjnl/7.4.308]
  57. Nolan DR, Gower AL, Destrade M, Ogden RW, McGarry JP (2014) A robust anisotropic hyperelastic formulation for the modelling of soft tissue. J Mech Behav Biomed Mater 39:48–60 [DOI: 10.1016/j.jmbbm.2014.06.016]
  58. Noonan AM, Mazara N, Zwambag DP, Weersink E, Power GA, Brown SHM (2020) Age–related changes in human single muscle fibre passive elastic properties are sarcomere length dependent. Exp Gerontol 137:110968 [DOI: 10.1016/j.exger.2020.110968]
  59. Odegard GM, Haut Donahue TL, Morrow DA, Kaufman KR (2008) Constitutive modeling of skeletal muscle tissue with an explicit strain–energy function. J Biomech Eng 130(6):061017 [DOI: 10.1115/1.3002766]
  60. Pertici I, Bongini L, Melli L, Bianchi G, Salvi L, Falorsi G, Squarci C, Bozó T, Cojoc D, Kellermayer MSZ, Lombardi V, Bianco P (2018) A myosin II nanomachine mimicking the striated muscle. Nat Commun 9(1):3532 [DOI: 10.1038/s41467-018-06073-9]
  61. Pietsch R, Wheatley BB, Haut Donahue TL, Gilbrech R, Prabhu R, Liao J, Williams LN (2014) Anisotropic compressive properties of passive porcine muscle tissue. J Biomech Eng 136(11):111003 [DOI: 10.1115/1.4028088]
  62. Prado LG, Makarenko I, Andresen C, Krüger M, Opitz CA, Linke WA (2005) Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles. J Gen Physiol 126(5):461–480 [DOI: 10.1085/jgp.200509364]
  63. Ramaswamy KS, Palmer ML, van der Meulen JH, Renoux A, Kostrominova TY, Michele DE, Faulkner JA (2011) Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J Physiol 589(5):1195–1208 [DOI: 10.1113/jphysiol.2010.201921]
  64. Röhrle O, Pullan AJ (2007) Three–dimensional finite element modelling of muscle forces during mastication. J Biomech 40(15):3363–3372 [DOI: 10.1016/j.jbiomech.2007.05.011]
  65. Sansour C (2008) On the physical assumptions underlying the volumetric–isochoric split and the case of anisotropy. Eur J Mech A Solids 27(1):28–39 [DOI: 10.1016/j.euromechsol.2007.04.001]
  66. Scellini B, Piroddi N, Dente M, Vitale G, Pioner JM, Coppini R, Ferrantini C, Poggesi C, Tesi C (2021) Mavacamten has a differential impact on force generation in myofibrils from rabbit psoas and human cardiac muscle. J Gen Physiol 153(7):e202012789 [DOI: 10.1085/jgp.202012789]
  67. Shalabi N, Cornachione A, de Souza Leite F, Vengallatore S, Rassier DE (2017) Residual force enhancement is regulated by titin in skeletal and cardiac myofibrils. J Physiol 595(6):2085–2098 [DOI: 10.1113/JP272983]
  68. Siebert T, Leichsenring K, Rode C, Wick C, Stutzig N, Schubert H, Blickhan R, Böl M (2015) Three–dimensional muscle architecture and comprehensive dynamic properties of rabbit gastrocnemius, plantaris and soleus: input for simulation studies. PLoS ONE 10(6):e0130985 [DOI: 10.1371/journal.pone.0130985]
  69. Siebert T, Tomalka A, Stutzig N, Leichsenring K, Böl M (2017) Changes in three–dimensional muscle structure of rabbit gastrocnemius, flexor digitorum longus, and tibialis anterior during growth. J Mech Behav Biomed Mater 74:507–519 [DOI: 10.1016/j.jmbbm.2017.07.045]
  70. Siebert T, Stutzig N, Rode C (2018) A hill–type muscle model expansion accounting for effects of varying transverse muscle load. J Biomech 66:57–62 [DOI: 10.1016/j.jbiomech.2017.10.043]
  71. Simms C, Kilroy H, Blackburn G, Takaza M (2016) The influence of physical dimension on apparent stress–strain behaviour of in vitro passive skeletal muscle samples. J Strain Anal Eng Des 52(1):3–11 [DOI: 10.1177/0309324716668673]
  72. Swist S, Unger A, Li Y, Vöge A, von Frieling–Salewsky M, Skärlén A, Cacciani N, Braun T, Larsson L, Linke WA (2020) Maintenance of sarcomeric integrity in adult muscle cells crucially depends on Z–disc anchored titin. Nat Commun 11(1):4479 [DOI: 10.1038/s41467-020-18131-2]
  73. Takaza M, Moerman KM, Gindre J, Lyons G, Simms CK (2013) The anisotropic mechanical behaviour of passive skeletal muscle tissue subjected to large tensile strain. J Mech Behav Biomed Mater 17:209–220 [DOI: 10.1016/j.jmbbm.2012.09.001]
  74. Takaza M, Moerman KM, Simms CK (2013) Passive skeletal muscle response to impact loading: experimental testing and inverse modelling. J Mech Behav Biomed Mater 27:214–225 [DOI: 10.1016/j.jmbbm.2013.04.016]
  75. Tamura A, Hayashi S, Matsumoto T (2016) Effect of loading rate on viscoelastic properties and local mechanical heterogeneity of freshly isolated muscle fiber bundles subjected to uniaxial stretching. J Mech Med Biol 16(06):1650086 [DOI: 10.1142/S021951941650086X]
  76. Tang CY, Zhang G, Tsui CP (2009) A 3D skeletal muscle model coupled with active contraction of muscle fibres and hyperelastic behaviour. J Biomech 42(7):865–872 [DOI: 10.1016/j.jbiomech.2009.01.021]
  77. Toursel T, Stevens L, Granzier H, Mounier Y (2002) Passive tension of rat skeletal soleus muscle fibers: effects of unloading conditions. J Appl Physiol 92(4):1465–1472 [DOI: 10.1152/japplphysiol.00621.2001]
  78. van Loocke M, Lyons CG, Simms CK (2006) A validated model of passive muscle in compression. J Biomech 39(16):2999–3009 [DOI: 10.1016/j.jbiomech.2005.10.016]
  79. van Rooij L, Bours R, van Hoof J, Mihm JJ, Ridella SA, Bass CR, Crandall JR (2003) The development, validation and application of a finite element upper extremity model subjected to air bag loading. Stapp Car Crash J 47:55–78
  80. Ward SR, Winters TM, O’Connor SM, Lieber RL (2020) Non–linear scaling of passive mechanical properties in fibers, bundles, fascicles and whole rabbit muscles. Front Physiol 11:211 [DOI: 10.3389/fphys.2020.00211]
  81. Wheatley BB (2020) Investigating passive muscle mechanics with biaxial stretch. Front Physiol. https://doi.org/10.3389/fphys.2020.01021 [DOI: 10.3389/fphys.2020.01021]
  82. Wood LK, Kayupov E, Gumucio JP, Mendias CL, Claflin DR, Brooks SV (2014) Intrinsic stiffness of extracellular matrix increases with age in skeletal muscles of mice. J Appl Physiol 117(4):363–369 [DOI: 10.1152/japplphysiol.00256.2014]
  83. Wu YN, Ren Y, Tsai LC, Gao F, Zhang LQ (2016) In vivo simultaneous evaluations of sarcomere imaging and muscle fiber tension. J Biomech 49(5):797–801 [DOI: 10.1016/j.jbiomech.2016.01.025]

Grants

  1. 127753742/Deutsche Forschungsgemeinschaft

MeSH Term

Animals
Rabbits
Stress, Mechanical
Biomechanical Phenomena
Muscle, Skeletal
Muscle Fibers, Skeletal
Pressure

Word Cloud

Created with Highcharts 10.0.0[Formula:seetext]modelmuscletissuecompressionmodebehaviourskeletalexperimentsIIdeformationloadingdirectionfibresthree-dimensionaldescribepassivemechanicalorientation-dependentaxialIIIfibrestatestiffesttext] kPastretchedstudyexperimentworkdevelopedanisotropicvalidatesemi-confinedperformedsoleusrabbitslatterspecimenprescribedpreventedadditionalspatialelongationneutrallengthkeptconstantOverallcanadequatelyrelativelysmallnumberparametersresponseoccursorientedperpendicularthusSemi-confinedyieldedextensivedatasetcollectedallowsdifferenterrormeasuresdependingcombinationstatesdescriptioncharacteristicsAxialParameteridentificationPassiveSemi–confinedSkeletal

Similar Articles

Cited By