Quantification of Total and Viable Cells and Determination of Serogroups and Antibiotic Resistance Patterns of in Chicken Meat from the North-Western Iberian Peninsula.

Cristina Rodríguez-Melcón, Alexandra Esteves, Sarah Panera-Martínez, Rosa Capita, Carlos Alonso-Calleja
Author Information
  1. Cristina Rodríguez-Melcón: Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain.
  2. Alexandra Esteves: Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal.
  3. Sarah Panera-Martínez: Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain.
  4. Rosa Capita: Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain. ORCID
  5. Carlos Alonso-Calleja: Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain. ORCID

Abstract

Twenty samples of minced chicken meat procured from butcher’s shops in León (Spain; 10 samples) and Vila Real (Portugal; 10 samples) were analyzed. Microbial concentrations (log10 cfu/g) of 7.53 ± 1.02 (viable aerobic microbiota), 7.13 ± 1.07 (psychrotrophic microorganisms), and 4.23 ± 0.88 (enterobacteria) were found. The detection method described in the UNE-EN ISO 11290-1 standard (based on isolation from the chromogenic medium OCLA) with confirmation by the polymerase chain reaction (PCR; lmo1030) (OCLA−PCR), revealed Listeria monocytogenes in 14 samples (70.0% of the total), nine of Spanish origin and five of Portuguese (p > 0.05). The levels of viable and inactivated L. monocytogenes in the samples were determined with a q-PCR using propidium monoazide (PMAxx) as a viability marker. Seven samples tested positive both with the OCLA−PCR and with the q-PCR, with estimated concentrations of viable cells varying between 2.15 log10 cfu/g (detection limit) and 2.94 log10 cfu/g. Three samples tested negative both with the OCLA−PCR and with the q-PCR. Seven samples were positive with the OCLA−PCR, but negative with the q-PCR, and three samples tested negative with the OCLA−PCR and positive with the q-PCR. The percentage of viable cells relative to the total ranged between 2.4% and 86.0%. Seventy isolates of L. monocytogenes (five from each positive sample) were classified in PCR serogroups with a multiplex PCR assay. L. monocytogenes isolates belonged to serogroups IIa (52 isolates; 74.3%), IIc (7; 10.0%), IVa (2; 2.9%), and IVb (9; 12.9%). The susceptibility of the 70 isolates to 15 antibiotics of clinical interest was tested. The strains presented resistance to between three and eight antibiotics. The average number of resistances was greater (p < 0.001) among strains isolated from Spanish samples (6.20 ± 1.08), than in those from Portugal (5.00 ± 1.08). In both groups of strains, a prevalence of resistance higher than 95% was observed for oxacillin, cefoxitin, cefotaxime, and cefepime. The need to handle minced chicken meat correctly, taking care to cook it sufficiently and to avoid cross-contamination, so as to reduce the danger of listeriosis, is emphasized. A combination of culture-dependent and culture-independent methods offers complementary routes for the detection in food of the cells of L. monocytogenes in various different physiological states.

Keywords

References

  1. Microorganisms. 2022 Feb 28;10(3): [PMID: 35336111]
  2. Vet Rec. 2014 Oct 4;175(13):325 [PMID: 24899065]
  3. Front Microbiol. 2022 Jan 04;12:792162 [PMID: 35058906]
  4. Int J Food Microbiol. 2017 Mar 20;245:79-87 [PMID: 28157581]
  5. Foods. 2018 May 03;7(5): [PMID: 29751496]
  6. Clin Microbiol Infect. 2012 Mar;18(3):268-81 [PMID: 21793988]
  7. Food Microbiol. 2018 Dec;76:513-517 [PMID: 30166181]
  8. Lancet Infect Dis. 2014 Nov;14(11):1073-1082 [PMID: 25241232]
  9. EFSA J. 2021 Feb 27;19(2):e06406 [PMID: 33680134]
  10. Int J Food Sci. 2019 Apr 18;2019:7835253 [PMID: 31139641]
  11. Compr Rev Food Sci Food Saf. 2018 Sep;17(5):1277-1292 [PMID: 33350166]
  12. J Vet Med Sci. 2016 Mar;78(3):477-9 [PMID: 26537550]
  13. J Anim Sci Biotechnol. 2016 Dec 12;7:68 [PMID: 27999667]
  14. Int J Food Microbiol. 2012 Feb 15;153(3):281-7 [PMID: 22208955]
  15. Int J Food Microbiol. 2008 Jan 15;121(1):99-105 [PMID: 18061295]
  16. J Food Prot. 2005 Jul;68(7):1467-71 [PMID: 16013389]
  17. Braz J Microbiol. 2017 Oct - Dec;48(4):689-694 [PMID: 28629969]
  18. Foods. 2019 Nov 01;8(11): [PMID: 31683845]
  19. Int J Food Microbiol. 1991 Jun;13(2):97-104 [PMID: 1909548]
  20. Sci Rep. 2021 Apr 27;11(1):9066 [PMID: 33907261]
  21. Front Microbiol. 2019 May 07;10:946 [PMID: 31134008]
  22. J Food Prot. 2002 Dec;65(12):1888-93 [PMID: 12495006]
  23. Animals (Basel). 2022 Sep 19;12(18): [PMID: 36139336]
  24. Int J Food Microbiol. 2007 Apr 20;115(3):268-80 [PMID: 17320231]
  25. Food Res Int. 2014 Oct;64:656-663 [PMID: 30011701]
  26. Int J Food Microbiol. 2022 Apr 2;366:109562 [PMID: 35134634]
  27. J Infect Public Health. 2018 Jul - Aug;11(4):572-577 [PMID: 29287806]
  28. Science. 2001 Oct 26;294(5543):849-52 [PMID: 11679669]
  29. Int J Food Microbiol. 2001 Apr 11;65(1-2):75-82 [PMID: 11322703]
  30. Foods. 2019 Nov 03;8(11): [PMID: 31684121]
  31. Pathogens. 2020 Dec 03;9(12): [PMID: 33287445]
  32. Meat Sci. 2013 Mar;93(3):586-92 [PMID: 23273468]
  33. Poult Sci. 2021 Jan;100(1):263-272 [PMID: 33357690]
  34. Food Microbiol. 2019 Sep;82:533-540 [PMID: 31027816]
  35. Food Sci Nutr. 2019 Dec 26;8(2):777-785 [PMID: 32148787]
  36. Meat Sci. 2002 Sep;62(1):45-50 [PMID: 22061190]
  37. J Food Prot. 2014 Aug;77(8):1407-10 [PMID: 25198605]
  38. Microorganisms. 2020 Aug 12;8(8): [PMID: 32806643]
  39. Appl Environ Microbiol. 2004 Oct;70(10):6299-301 [PMID: 15466579]
  40. Int J Food Microbiol. 2012 Sep 3;158(3):203-8 [PMID: 22874767]
  41. Soc Appl Bacteriol Symp Ser. 1992;21:103S-14S [PMID: 1502596]
  42. Meat Sci. 2012 Aug;91(4):486-9 [PMID: 22459497]
  43. Poult Sci. 2019 Apr 1;98(4):1791-1804 [PMID: 30544256]
  44. J Dairy Sci. 2015 Mar;98(3):1625-33 [PMID: 25582587]
  45. Food Microbiol. 2013 Jun;34(2):252-8 [PMID: 23541191]
  46. Meat Sci. 2017 Jul;129:169-175 [PMID: 28324868]
  47. Crit Rev Food Sci Nutr. 2013;53(1):11-48 [PMID: 23035919]
  48. Front Microbiol. 2020 Dec 15;11:551020 [PMID: 33384664]
  49. J Clin Microbiol. 2004 Aug;42(8):3819-22 [PMID: 15297538]
  50. J Food Prot. 2022 Jan 1;85(1):54-59 [PMID: 34525194]
  51. PLoS One. 2015 Aug 28;10(8):e0136682 [PMID: 26317852]
  52. Br Poult Sci. 2008 Jan;49(1):12-20 [PMID: 18210285]
  53. Lett Appl Microbiol. 2004;39(3):290-5 [PMID: 15287877]
  54. Poult Sci. 2017 Sep 1;96(11):4046-4052 [PMID: 29050434]
  55. Microorganisms. 2019 Nov 05;7(11): [PMID: 31694193]
  56. J Food Prot. 2002 Jul;65(7):1200-6 [PMID: 12117260]

Grants

  1. LE018P20/Junta de Castilla y León
  2. RTI2018-098267-R-C33/Ministerio de Ciencia, Innovación y Universidades
  3. 18BB282/University of Leon

Word Cloud

Created with Highcharts 10.0.0samplesmonocytogenesq-PCR±OCLA−PCR21viableLtestedpositiveisolatesmincedchicken10log10cfu/g70detectionPCR0%cellsnegativeserogroupsstrainsresistancefoodmeatPortugalconcentrationsListeria70totalSpanishfivepviabilitySeven15three9%antibiotics08Twentyprocuredbutcher’sshopsLeónSpainVilaRealanalyzedMicrobial5302aerobicmicrobiota1307psychrotrophicmicroorganisms42388enterobacteriafoundmethoddescribedUNE-ENISO11290-1standardbasedisolationchromogenicmediumOCLAconfirmationpolymerasechainreactionlmo1030revealed14nineoriginPortuguese>05levelsinactivateddeterminedusingpropidiummonoazidePMAxxmarkerestimatedvaryinglimit94Threepercentagerelativeranged4%86SeventysampleclassifiedmultiplexassaybelongedIIa52743%IIcIVaIVb912susceptibilityclinicalinterestpresentedeightaveragenumberresistancesgreater<001amongisolated620500groupsprevalencehigher95%observedoxacillincefoxitincefotaximecefepimeneedhandlecorrectlytakingcarecooksufficientlyavoidcross-contaminationreducedangerlisteriosisemphasizedcombinationculture-dependentculture-independentmethodsofferscomplementaryroutesvariousdifferentphysiologicalstatesQuantificationTotalViableCellsDeterminationSerogroupsAntibioticResistancePatternsChickenMeatNorth-WesternIberianPeninsulaantimicrobialmicrobiologysafety

Similar Articles

Cited By (3)