Cyanidin Alleviated CCl-Induced Acute Liver Injury by Regulating the Nrf2 and NF-κB Signaling Pathways.

Bulei Wang, Shumao Cui, Bingyong Mao, Qiuxiang Zhang, Fengwei Tian, Jianxin Zhao, Xin Tang, Wei Chen
Author Information
  1. Bulei Wang: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
  2. Shumao Cui: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
  3. Bingyong Mao: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
  4. Qiuxiang Zhang: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. ORCID
  5. Fengwei Tian: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
  6. Jianxin Zhao: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
  7. Xin Tang: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
  8. Wei Chen: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.

Abstract

Acute liver injury has multiple causes and can result in liver failure. In this study, we evaluated the hepatoprotective ability of cyanidin (Cy) and investigated its associated mechanisms. Cy administration significantly and dose-dependently ameliorated acute liver injury induced by carbon tetrachloride (CCl). High-dose Cy showed effects comparable to those achieved by the positive control (silymarin). Severe oxidative stress and inflammatory responses in the liver tissue induced by CCl were significantly mitigated by Cy supplementation. The total antioxidant capacity and the activity of superoxide dismutase, catalase, and glutathione peroxidase were increased and the content of malondialdehyde, lipid peroxide, tumor necrosis factor α, interleukin-1β, and interleukin-6 were decreased. Additionally, the Nrf2 and NF-κB signaling pathways, which regulate antioxidative and inflammatory responses, were analyzed using quantitative real-time polymerase chain reaction and western blot assay. Cy treatment not only increased Nrf2 transcription and expression but also decreased NF-κB signaling. Moreover, molecular docking simulation indicated that Cy had high affinity for Keap1 and NF-κB/p65, which may promote nuclear translocation of Nrf2 and inhibit that of NF-κB. In summary, Cy treatment exerted antioxidative and anti-inflammatory effects and ameliorated liver injury by increasing Nrf2 and inhibiting the NF-κB pathway, demonstrating the potential of Cy as a therapeutic agent in liver injury.

Keywords

References

  1. J Food Biochem. 2021 Dec;45(12):e13964 [PMID: 34730246]
  2. Int J Biol Macromol. 2020 Jul 1;154:1548-1555 [PMID: 31730990]
  3. Food Funct. 2022 Jul 4;13(13):7333-7345 [PMID: 35726830]
  4. Appl Microbiol Biotechnol. 2019 Jan;103(1):375-393 [PMID: 30345482]
  5. Exp Mol Pathol. 2020 Aug;115:104438 [PMID: 32277959]
  6. J Agric Food Chem. 2022 Mar 9;70(9):2889-2897 [PMID: 35212537]
  7. J Food Sci. 2022 Jun;87(6):2626-2639 [PMID: 35534088]
  8. J Agric Food Chem. 2022 Jul 20;70(28):8680-8692 [PMID: 35797025]
  9. J Agric Food Chem. 2022 Jul 6;70(26):7953-7967 [PMID: 35729734]
  10. Food Funct. 2020 May 1;11(5):4485-4498 [PMID: 32378684]
  11. Carbohydr Polym. 2021 Jul 1;263:117979 [PMID: 33858575]
  12. J Agric Food Chem. 2021 Jun 2;69(21):5938-5947 [PMID: 34003645]
  13. Antioxidants (Basel). 2021 Jun 18;10(6): [PMID: 34207230]
  14. Free Radic Biol Med. 2021 Nov 20;176:176-188 [PMID: 34610361]
  15. J Agric Food Chem. 2021 Nov 10;69(44):13093-13101 [PMID: 34714650]
  16. Food Chem Toxicol. 2022 Mar;161:112823 [PMID: 35063475]
  17. Int J Biol Macromol. 2021 Aug 31;185:338-349 [PMID: 34171250]
  18. J Inflamm Res. 2021 Oct 05;14:5111-5121 [PMID: 34675591]
  19. Crit Rev Food Sci Nutr. 2022 Sep 21;:1-17 [PMID: 36128763]
  20. Food Chem. 2022 Sep 1;387:132938 [PMID: 35429937]
  21. Int J Mol Sci. 2021 Jan 22;22(3): [PMID: 33499185]
  22. J Comput Chem. 2009 Dec;30(16):2785-91 [PMID: 19399780]
  23. J Agric Food Chem. 2022 Feb 16;70(6):1911-1922 [PMID: 35104139]
  24. Antioxidants (Basel). 2020 Mar 27;9(4): [PMID: 32230772]
  25. Antioxidants (Basel). 2022 Feb 15;11(2): [PMID: 35204272]
  26. J Ethnopharmacol. 2021 Nov 15;280:114433 [PMID: 34280502]
  27. Fish Shellfish Immunol. 2020 Apr;99:154-166 [PMID: 32045638]
  28. Antioxidants (Basel). 2019 Mar 14;8(3): [PMID: 30875793]
  29. J Cell Physiol. 2016 Mar;231(3):558-67 [PMID: 25545964]
  30. Antioxidants (Basel). 2022 Sep 13;11(9): [PMID: 36139874]
  31. World J Gastroenterol. 2020 Oct 7;26(37):5629-5645 [PMID: 33088157]
  32. Nutrients. 2022 Feb 24;14(5): [PMID: 35267945]
  33. J Agric Food Chem. 2022 Jul 6;70(26):8097-8110 [PMID: 35729769]
  34. J Agric Food Chem. 2021 Jul 14;69(27):7619-7628 [PMID: 34156842]

Word Cloud

Created with Highcharts 10.0.0CyliverNrf2NF-κBinjuryAcutecyanidinsignificantlyamelioratedacuteinducedCCleffectsinflammatoryresponsesincreaseddecreasedsignalingantioxidativetreatmentpathwaymultiplecausescanresultfailurestudyevaluatedhepatoprotectiveabilityinvestigatedassociatedmechanismsadministrationdose-dependentlycarbontetrachlorideHigh-doseshowedcomparableachievedpositivecontrolsilymarinSevereoxidativestresstissuemitigatedsupplementationtotalantioxidantcapacityactivitysuperoxidedismutasecatalaseglutathioneperoxidasecontentmalondialdehydelipidperoxidetumornecrosisfactorαinterleukin-1βinterleukin-6Additionallypathwaysregulateanalyzedusingquantitativereal-timepolymerasechainreactionwesternblotassaytranscriptionexpressionalsoMoreovermoleculardockingsimulationindicatedhighaffinityKeap1NF-κB/p65maypromotenucleartranslocationinhibitsummaryexertedanti-inflammatoryincreasinginhibitingdemonstratingpotentialtherapeuticagentCyanidinAlleviatedCCl-InducedLiverInjuryRegulatingSignalingPathwaysanti-inflammationantioxidation

Similar Articles

Cited By