Nodulation and Growth Promotion of Chickpea by Isolates from Diverse Sources.

Edwin I Wanjofu, Stephanus N Venter, Chrizelle W Beukes, Emma T Steenkamp, Eastonce T Gwata, Esther K Muema
Author Information
  1. Edwin I Wanjofu: Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa. ORCID
  2. Stephanus N Venter: Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa. ORCID
  3. Chrizelle W Beukes: Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa.
  4. Emma T Steenkamp: Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa.
  5. Eastonce T Gwata: Department of Plant and Soil Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa. ORCID
  6. Esther K Muema: Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa.

Abstract

The cultivation of chickpea (Cicer arietinum L.) in South Africa is dependent on the application of suitable Mesorhizobium inoculants. Therefore, we evaluated the symbiotic effectiveness of several Mesorhizobium strains with different chickpea genotypes under controlled conditions. The tested parameters included shoot dry weight (SDW), nodule fresh weight (NFW), plant height, relative symbiotic effectiveness (RSE) on the plant as well as indole acetic acid (IAA) production and phosphate solubilization on the rhizobia. Twenty-one Mesorhizobium strains and six desi chickpea genotypes were laid out in a completely randomized design (CRD) with three replicates in a glasshouse pot experiment. The factors, chickpea genotype and Mesorhizobium strain, had significant effects on the measured parameters (p < 0.001) but lacked significant interactions based on the analysis of variance (ANOVA). The light variety desi genotype outperformed the other chickpea genotypes on all tested parameters. In general, inoculation with strains LMG15046, CC1192, XAP4, XAP10, and LMG14989 performed best for all the tested parameters. All the strains were able to produce IAA and solubilize phosphate except the South African field isolates, which could not solubilize phosphate. Taken together, inoculation with compatible Mesorhizobium promoted chickpea growth. This is the first study to report on chickpea-compatible Mesorhizobium strains isolated from uninoculated South African soils with no history of chickpea production; although, their plant growth promotion ability was poorer compared to some of the globally sourced strains. Since this study was conducted under controlled conditions, we recommend field studies to assess the performance of the five highlighted strains under environmental conditions in South Africa.

Keywords

References

  1. Front Microbiol. 2019 Jul 09;10:1506 [PMID: 31338077]
  2. Appl Microbiol Biotechnol. 2009 Aug;84(1):11-8 [PMID: 19568745]
  3. J Exp Bot. 2007;58(9):2297-306 [PMID: 17519352]
  4. FEMS Microbiol Ecol. 2008 Nov;66(2):391-400 [PMID: 18795953]
  5. Br J Nutr. 2012 Aug;108 Suppl 1:S11-26 [PMID: 22916806]
  6. Braz J Microbiol. 2012 Apr;43(2):682-91 [PMID: 24031880]
  7. Arch Microbiol. 2021 Jul;203(5):2129-2137 [PMID: 33611634]
  8. Nature. 2001 Jun 21;411(6840):948-50 [PMID: 11418858]
  9. Syst Appl Microbiol. 2004 May;27(3):380-95 [PMID: 15214644]
  10. Sci Rep. 2016 Dec 16;6:38636 [PMID: 27982107]
  11. Indian J Exp Biol. 2006 Aug;44(8):671-4 [PMID: 16924839]
  12. Plant Physiol. 1951 Jan;26(1):192-5 [PMID: 16654351]
  13. J Integr Plant Biol. 2010 Jan;52(1):61-76 [PMID: 20074141]
  14. Agric Ecosyst Environ. 2018 Jul 1;261:161-171 [PMID: 29970945]
  15. J Bacteriol. 2004 Apr;186(8):2439-48 [PMID: 15060047]
  16. Mol Microbiol. 2006 Nov;62(3):723-34 [PMID: 17076666]
  17. Ann Bot. 2017 Jun 1;119(8):1319-1331 [PMID: 28369229]
  18. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D23-6 [PMID: 14681350]
  19. Sci Rep. 2021 May 6;11(1):9655 [PMID: 33958646]
  20. Appl Environ Microbiol. 2006 Jul;72(7):4964-9 [PMID: 16820494]
  21. BMC Plant Biol. 2008 Oct 16;8:106 [PMID: 18922189]
  22. Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15200-15209 [PMID: 31285337]
  23. ISME J. 2019 Feb;13(2):301-315 [PMID: 30218020]
  24. Arch Microbiol. 2021 May;203(4):1657-1670 [PMID: 33433645]
  25. Indian J Microbiol. 2009 Mar;49(1):98-102 [PMID: 23100757]
  26. Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12268-12273 [PMID: 27733511]
  27. Philos Trans R Soc Lond B Biol Sci. 2013 May 27;368(1621):20130119 [PMID: 23713117]
  28. Int J Syst Evol Microbiol. 2012 Sep;62(Pt 9):2180-2186 [PMID: 22058324]
  29. Microbiol Mol Biol Rev. 2000 Mar;64(1):180-201 [PMID: 10704479]
  30. Can J Microbiol. 2007 Mar;53(3):427-34 [PMID: 17538653]
  31. Philos Trans R Soc Lond B Biol Sci. 2022 Jan 17;377(1842):20200471 [PMID: 34839705]
  32. Lett Appl Microbiol. 2007 Apr;44(4):412-8 [PMID: 17397480]
  33. J Gen Appl Microbiol. 2010 Aug;56(4):331-8 [PMID: 20953097]
  34. Environ Microbiol. 2007 Oct;9(10):2496-511 [PMID: 17803775]
  35. Microorganisms. 2020 Mar 14;8(3): [PMID: 32183288]
  36. Agric Ecosyst Environ. 2018 Jul 1;261:144-152 [PMID: 29970943]
  37. J Exp Bot. 2017 Apr 1;68(8):1919-1926 [PMID: 27927992]
  38. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5145-9 [PMID: 9560243]
  39. J Ind Microbiol Biotechnol. 2007 Oct;34(10):635-48 [PMID: 17665234]
  40. Anal Biochem. 1987 Jan;160(1):47-56 [PMID: 2952030]
  41. Appl Environ Microbiol. 2020 Dec 18;: [PMID: 33355157]
  42. Int J Syst Bacteriol. 1995 Oct;45(4):640-8 [PMID: 7547282]
  43. Int J Syst Evol Microbiol. 2012 Nov;62(Pt 11):2737-2742 [PMID: 22228663]
  44. Physiol Plant. 2003 May;118(1):10-15 [PMID: 12702008]
  45. Microb Ecol. 2017 May;73(4):900-915 [PMID: 27904921]
  46. Cell Microbiol. 2020 Jan;22(1):e13124 [PMID: 31610071]
  47. 3 Biotech. 2015 Aug;5(4):355-377 [PMID: 28324544]
  48. FEMS Microbiol Lett. 2018 Feb 1;365(2): [PMID: 29240940]
  49. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  50. Int J Syst Bacteriol. 1994 Jul;44(3):511-22 [PMID: 7520739]
  51. Arch Microbiol. 2021 Apr;203(3):1167-1174 [PMID: 33226466]

Grants

  1. FLR\R1\201439/Future Leaders -African Independent Researchers (FLAIR) Fellowship Programme, which is a partnership between the African Academy of Sciences and the Royal Society funded by the UK Government's Global Challenges Research Fund

Word Cloud

Created with Highcharts 10.0.0chickpeastrainsMesorhizobiumSouthparameterssymbioticeffectivenessgenotypesconditionstestedplantphosphateAfricacontrolledweightIAAproductiondesigenotypesignificantinoculationsolubilizeAfricanfieldgrowthstudycultivationCicerarietinumLdependentapplicationsuitableinoculantsThereforeevaluatedseveraldifferentincludedshootdrySDWnodulefreshNFWheightrelativeRSEwellindoleaceticacidsolubilizationrhizobiaTwenty-onesixlaidcompletelyrandomizeddesignCRDthreereplicatesglasshousepotexperimentfactorsstraineffectsmeasuredp<0001lackedinteractionsbasedanalysisvarianceANOVAlightvarietyoutperformedgeneralLMG15046CC1192XAP4XAP10LMG14989performedbestableproduceexceptisolatesTakentogethercompatiblepromotedfirstreportchickpea-compatibleisolateduninoculatedsoilshistoryalthoughpromotionabilitypoorercomparedgloballysourcedSinceconductedrecommendstudiesassessperformancefivehighlightedenvironmentalNodulationGrowthPromotionChickpeaIsolatesDiverseSourcesnaturalizednodulation

Similar Articles

Cited By