Fabrication of Nanostructured Polycaprolactone (PCL) Film Using a Thermal Imprinting Technique and Assessment of Antibacterial Function for Its Application.

Hee-Kyeong Kim, Se-Jin Jang, Young-Sam Cho, Hyun-Ha Park
Author Information
  1. Hee-Kyeong Kim: Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea.
  2. Se-Jin Jang: Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea.
  3. Young-Sam Cho: Department of Mechanical Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea.
  4. Hyun-Ha Park: Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea.

Abstract

In the use of the medical devices, it is essential to prevent the attachment of bacteria to the device surface or to kill the attached bacteria. To kill bacteria, many researchers have used antibiotics or studied nanostructure-based antibacterial surfaces, which rely on mechanical antibacterial methods. Several polymers are widely used for device fabrication, one of which is polycaprolactone (PCL). PCL is biocompatible, biodegradable, easy to fabricate using 3D printing, relatively inexpensive and its quality is easily controlled; therefore, there are various approaches to its use in bio-applications. In addition, it is an FDA-approved material, so it is often used as an implantable material in the human body. However, PCL has no inherent antibacterial function, so it is necessary to develop antibacterial functions in scaffold or film-based PCL medical devices. In this study, process parameters for nanopillar fabrication were established through a simple thermal imprinting method with PCL. Finally, a PCL film with a flexible and transparent nanopillar structure was produced, and the mechano-bactericidal potential was demonstrated using only one PCL material. PCL with nanopillars showed bactericidal ability against () and () bacteria cultured on its surface that resulted in membrane damage and death due to contact with nanopillars. Additionally, bacteriostatic results were shown to inhibit bacterial growth and activity of () on PCL nanostructured columns. The fabricated nanopillar structure has confirmed that mechanically induced antibacterial function and can be applied to implantable medical devices.

Keywords

References

  1. Front Bioeng Biotechnol. 2022 Sep 23;10:1027351 [PMID: 36213068]
  2. Int J Biol Macromol. 2017 Nov;104(Pt A):708-715 [PMID: 28645765]
  3. Polymers (Basel). 2022 Sep 13;14(18): [PMID: 36145962]
  4. Int J Mol Sci. 2022 Sep 17;23(18): [PMID: 36142811]
  5. ACS Appl Bio Mater. 2022 Jun 20;5(6):3006-3012 [PMID: 35609304]
  6. Small. 2010 Dec 6;6(23):2755-61 [PMID: 21069889]
  7. Data Brief. 2020 Aug 24;32:106223 [PMID: 32939379]
  8. Biotechnol Bioeng. 2021 May;118(5):1862-1875 [PMID: 33527343]
  9. ACS Appl Mater Interfaces. 2022 Aug 31;14(34):39478-39488 [PMID: 35959590]
  10. Bioact Mater. 2019 Nov 01;4:346-357 [PMID: 31720491]
  11. Polymers (Basel). 2022 Oct 01;14(19): [PMID: 36236066]
  12. Materials (Basel). 2018 Jun 22;11(7): [PMID: 29932127]
  13. ACS Biomater Sci Eng. 2021 Jun 14;7(6):2268-2278 [PMID: 34014655]
  14. ACS Macro Lett. 2019 Jan 15;8(1):64-69 [PMID: 35619411]
  15. Polymers (Basel). 2022 Feb 23;14(5): [PMID: 35267700]
  16. ACS Biomater Sci Eng. 2022 Sep 12;8(9):3717-3732 [PMID: 35948432]
  17. Nat Rev Microbiol. 2021 Jan;19(1):8-22 [PMID: 32807981]
  18. Int J Pharm. 2017 Jul 15;527(1-2):161-170 [PMID: 28461267]
  19. NPJ Regen Med. 2021 Sep 9;6(1):52 [PMID: 34504097]
  20. ACS Nano. 2019 Oct 22;13(10):11181-11193 [PMID: 31518110]
  21. Eur Cell Mater. 2003 May 20;5:1-16; discussion 16 [PMID: 14562275]
  22. Sci Rep. 2016 Nov 18;6:36857 [PMID: 27857168]
  23. Mater Sci Eng C Mater Biol Appl. 2020 Apr;109:110537 [PMID: 32228892]
  24. Int J Pharm. 2021 May 15;601:120525 [PMID: 33781878]
  25. Int J Mol Sci. 2021 Sep 29;22(19): [PMID: 34638851]
  26. ACS Nano. 2015 Nov 24;9(11):10664-72 [PMID: 26434605]
  27. Biomaterials. 2001 Dec;22(24):3217-24 [PMID: 11700793]
  28. Polymers (Basel). 2022 Feb 15;14(4): [PMID: 35215658]
  29. Colloids Surf B Biointerfaces. 2018 Dec 1;172:330-337 [PMID: 30179802]
  30. Mater Today Bio. 2021 Dec 04;13:100176 [PMID: 34938990]
  31. Mater Sci Eng C Mater Biol Appl. 2019 Oct;103:109768 [PMID: 31349413]
  32. Front Cell Infect Microbiol. 2022 Jan 05;11:795797 [PMID: 35071046]
  33. Int J Biol Macromol. 2020 Apr 15;149:853-860 [PMID: 31987940]
  34. RSC Adv. 2019 Aug 21;9(45):26252-26262 [PMID: 35531040]
  35. J Nanobiotechnology. 2017 Oct 2;15(1):64 [PMID: 28969628]
  36. Mater Sci Eng C Mater Biol Appl. 2020 May;110:110698 [PMID: 32204012]
  37. Front Bioeng Biotechnol. 2020 Feb 14;8:84 [PMID: 32117950]

Grants

  1. This paper was supported by Wonkwang University in 2020/Wonkwang University

Word Cloud

Created with Highcharts 10.0.0PCLantibacterialbacteriamedicaldevicesusedmaterialnanopillarusedevicesurfacekillfabricationonepolycaprolactoneusingimplantablefunctionfilmflexiblestructurenanopillarsessentialpreventattachmentattachedmanyresearchersantibioticsstudiednanostructure-basedsurfacesrelymechanicalmethodsSeveralpolymerswidelybiocompatiblebiodegradableeasyfabricate3Dprintingrelativelyinexpensivequalityeasilycontrolledthereforevariousapproachesbio-applicationsadditionFDA-approvedoftenhumanbodyHoweverinherentnecessarydevelopfunctionsscaffoldfilm-basedstudyprocessparametersestablishedsimplethermalimprintingmethodFinallytransparentproducedmechano-bactericidalpotentialdemonstratedshowedbactericidalabilityculturedresultedmembranedamagedeathduecontactAdditionallybacteriostaticresultsshowninhibitbacterialgrowthactivitynanostructuredcolumnsfabricatedconfirmedmechanicallyinducedcanappliedFabricationNanostructuredPolycaprolactoneFilmUsingThermalImprintingTechniqueAssessmentAntibacterialFunctionApplicationnanostructure

Similar Articles

Cited By