Automated and Continuous Fatigue Monitoring in Construction Workers Using Forearm EMG and IMU Wearable Sensors and Recurrent Neural Network.

Srikanth Sagar Bangaru, Chao Wang, Fereydoun Aghazadeh
Author Information
  1. Srikanth Sagar Bangaru: ISC Constructors LLC, 20480 Highland Rd, Baton Rouge, LA 70817, USA. ORCID
  2. Chao Wang: Bert S. Turner Department of Construction Management, Louisiana State University, 3315D Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA. ORCID
  3. Fereydoun Aghazadeh: Department of Mechanical & Industrial Engineering, Louisiana State University, 3250A Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA.

Abstract

About 40% of the US construction workforce experiences high-level fatigue, which leads to poor judgment, increased risk of injuries, a decrease in productivity, and a lower quality of work. Therefore, it is essential to monitor fatigue to reduce its adverse effects and prevent long-term health problems. However, since fatigue demonstrates itself in several complex processes, there is no single standard measurement method for fatigue detection. This study aims to develop a system for continuous workers' fatigue monitoring by predicting the aerobic fatigue threshold (AFT) using forearm muscle activity and motion data. The proposed system consists of five modules: Data acquisition, activity recognition, oxygen uptake prediction, maximum aerobic capacity (MAC) estimation, and continuous AFT monitoring. The proposed system was evaluated on the participants performing fourteen scaffold-building activities. The results show that the AFT features have achieved a higher accuracy of 92.31% in assessing the workers' fatigue level compared to heart rate (51.28%) and percentage heart rate reserve (50.43%) features. Moreover, the overall performance of the proposed system on unseen data using average two-min AFT features was 76.74%. The study validates the feasibility of using forearm muscle activity and motion data to workers' fatigue levels continuously.

Keywords

References

  1. Appl Ergon. 2017 Nov;65:515-529 [PMID: 28259238]
  2. J Psychosom Res. 2004 Feb;56(2):157-70 [PMID: 15016573]
  3. Appl Ergon. 2017 Nov;65:139-151 [PMID: 28802433]
  4. J Mot Behav. 2009 Nov;41(6):529-34 [PMID: 19892658]
  5. Ind Psychiatry J. 2015 Jan-Jun;24(1):12-7 [PMID: 26257477]
  6. J Psychosom Res. 1993;37(2):147-53 [PMID: 8463991]
  7. Br J Sports Med. 2008 Sep;42(9):709-14 [PMID: 18308872]
  8. Med Devices (Auckl). 2015 Aug 27;8:369-79 [PMID: 26346869]
  9. J Rehabil Res Dev. 2010;47(5):477-84 [PMID: 20803391]
  10. Neurosci Biobehav Rev. 2014 Jul;44:58-75 [PMID: 23116991]
  11. Sensors (Basel). 2020 Sep 15;20(18): [PMID: 32942606]
  12. Ciba Found Symp. 1981;82:1-18 [PMID: 6117420]
  13. Psychiatry Res. 1991 Mar;36(3):291-8 [PMID: 2062970]
  14. Dev Med Child Neurol. 2011 Sep;53(9):861-864 [PMID: 21569015]
  15. Br J Ind Med. 1979 Aug;36(3):175-86 [PMID: 40999]
  16. Occup Med (Lond). 2015 Apr;65(3):245-50 [PMID: 25701835]
  17. Am Ind Hyg Assoc J. 1968 Nov-Dec;29(6):531-6 [PMID: 5703672]
  18. Accid Anal Prev. 2011 Mar;43(2):591-4 [PMID: 21130219]
  19. J Mot Behav. 1996 Dec;28(4):304-14 [PMID: 14769553]
  20. Appl Ergon. 2014 Nov;45(6):1705-11 [PMID: 24980679]
  21. Am J Ind Med. 2015 Feb;58(2):220-8 [PMID: 25603944]
  22. Neurorehabil Neural Repair. 2010 Jan;24(1):62-9 [PMID: 19684304]
  23. Sports Med. 2006;36(10):881-909 [PMID: 17004850]
  24. Hum Factors. 1994 Jun;36(2):219-31 [PMID: 8070788]

Grants

  1. 2026575 and 2222881/National Science Foundation

MeSH Term

Humans
Forearm
Construction Industry
Neural Networks, Computer
Upper Extremity
Wearable Electronic Devices

Word Cloud

Created with Highcharts 10.0.0fatigueactivitysystemAFTworkers'monitoringaerobicusingmuscledataproposedfeaturesconstructionstudycontinuousthresholdforearmmotionrecognitionoxygenpredictionheartrate40%USworkforceexperienceshigh-levelleadspoorjudgmentincreasedriskinjuriesdecreaseproductivitylowerqualityworkThereforeessentialmonitorreduceadverseeffectspreventlong-termhealthproblemsHoweversincedemonstratesseveralcomplexprocessessinglestandardmeasurementmethoddetectionaimsdeveloppredictingconsistsfivemodules:DataacquisitionuptakemaximumcapacityMACestimationevaluatedparticipantsperformingfourteenscaffold-buildingactivitiesresultsshowachievedhigheraccuracy9231%assessinglevelcompared5128%percentagereserve5043%Moreoveroverallperformanceunseenaveragetwo-min7674%validatesfeasibilitylevelscontinuouslyAutomatedContinuousFatigueMonitoringConstructionWorkersUsingForearmEMGIMUWearableSensorsRecurrentNeuralNetworklaborshortagescaffoldbuildingwearablesensorwork-relatedmusculoskeletaldisorders

Similar Articles

Cited By