A systematic review and meta-analysis of integrated studies on antimicrobial resistance in Vietnam, with a focus on , from a One Health perspective.

Doan Hoang Phu, Tuempong Wongtawan, Dinh Bao Truong, Nguyen Van Cuong, Juan Carrique-Mas, Thotsapol Thomrongsuwannakij
Author Information
  1. Doan Hoang Phu: Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand.
  2. Tuempong Wongtawan: Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand.
  3. Dinh Bao Truong: Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City 70000, Viet Nam.
  4. Nguyen Van Cuong: Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Viet Nam.
  5. Juan Carrique-Mas: Food and Agriculture Organization of the United Nations, Ha Noi 10000, Viet Nam.
  6. Thotsapol Thomrongsuwannakij: Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand.

Abstract

Vietnam is a low- and middle-income country (LMIC), a primary food producer, and an antimicrobial resistance (AMR) hotspot. AMR is recognized as a One Health challenge since it may transfer between humans, animals and the environment. This study aimed to apply systematic review and meta-analysis to investigate the phenotypic profiles and correlations of antimicrobial-resistant across three compartments: humans, animals and the environment in Vietnam. A total of 89 articles found in PubMed, Science Direct, and Google Scholar databases were retrieved for qualitative synthesis. and non-typhoidal (NTS) were the most common bacterial species in studies of all compartments (60/89 studies). Among antimicrobials classified as critically important, the resistance levels were observed to be highest to quinolones, 3rd generation of cephalosporins, penicillins, and aminoglycosides. Of 89 studies, 55 articles reported the resistance prevalence of and NTS in healthy humans, animals and the environment against ciprofloxacin, ceftazidime, ampicillin, gentamicin, sulfamethoxazole-trimethoprim, chloramphenicol was used for meta-analysis. The pooled prevalence was found highest in against ampicillin 84.0% (95% CI 73.0-91.0%) and sulfamethoxazole-trimethoprim 66.0% (95% CI 56.0-75.0%) while in NTS they were 34.0% (95% CI 24.0-46.0%), 33.0% (95% CI 25.0-42.0%), respectively. There were no significant differences in the pooled prevalence of and NTS to these antimicrobials across healthy humans, animals and the environment, except for ceftazidime-resistant (χ = 8.29,  = 0.02), chloramphenicol-resistant (χ = 9.65,  < 0.01) and chloramphenicol-resistant NTS (χ = 7.51, p = 0.02). Findings from the multiple meta-regression models indicated that the AMR levels in (β = 1.887,  < 0.001) and the North (β = 0.798,  = 0.047) had a higher fraction of AMR than NTS and other regions of Vietnam. The outcomes of this study play an important role as the baseline information for further investigation and follow-up intervention strategies to tackle AMR in Vietnam, and more generally, can be adapted to other LMICs.

Keywords

References

  1. Sci Total Environ. 2018 Dec 15;645:393-400 [PMID: 30029118]
  2. Trop Med Int Health. 2018 Apr;23(4):415-424 [PMID: 29575455]
  3. Antimicrob Agents Chemother. 2002 Dec;46(12):3739-43 [PMID: 12435670]
  4. Proc Biol Sci. 2018 Apr 11;285(1876): [PMID: 29643217]
  5. Infect Chemother. 2021 Sep;53(3):546-552 [PMID: 34405594]
  6. Front Vet Sci. 2021 Jul 08;8:618497 [PMID: 34307512]
  7. J Vet Med Sci. 2008 Nov;70(11):1159-64 [PMID: 19057132]
  8. Biomed Res Int. 2016;2016:8182096 [PMID: 26989692]
  9. Antibiotics (Basel). 2016 Nov 02;5(4): [PMID: 27827853]
  10. J Clin Microbiol. 2008 Mar;46(3):996-1004 [PMID: 18174300]
  11. Antimicrob Agents Chemother. 2005 Feb;49(2):816-9 [PMID: 15673777]
  12. Ann N Y Acad Sci. 2006 Oct;1081:543-5 [PMID: 17135566]
  13. Antimicrob Agents Chemother. 2019 May 24;63(6): [PMID: 30988145]
  14. Int J Food Microbiol. 2008 Jun 10;124(3):217-23 [PMID: 18457892]
  15. Appl Environ Microbiol. 2007 Nov;73(21):6885-90 [PMID: 17766455]
  16. BMC Infect Dis. 2017 Jun 15;17(1):429 [PMID: 28619105]
  17. J Glob Antimicrob Resist. 2019 Dec;19:222-227 [PMID: 31100501]
  18. J Med Microbiol. 2007 Aug;56(Pt 8):1086-1096 [PMID: 17644717]
  19. Int J Infect Dis. 2022 Jun;119:120-129 [PMID: 35358724]
  20. Infect Drug Resist. 2019 Oct 23;12:3317-3325 [PMID: 31695451]
  21. Antimicrob Resist Infect Control. 2020 Jan 14;9(1):16 [PMID: 31956405]
  22. PLoS One. 2015 Jul 29;10(7):e0134252 [PMID: 26222547]
  23. Front Vet Sci. 2021 Aug 27;8:705044 [PMID: 34513973]
  24. Evol Appl. 2015 Mar;8(3):273-83 [PMID: 25861385]
  25. JAC Antimicrob Resist. 2021 Aug 12;3(3):dlab107 [PMID: 34396120]
  26. Foodborne Pathog Dis. 2021 May;18(5):354-363 [PMID: 33902318]
  27. Foodborne Pathog Dis. 2015 Aug;12(8):719-25 [PMID: 26110236]
  28. Lancet. 2022 Feb 12;399(10325):629-655 [PMID: 35065702]
  29. BMJ. 2021 Mar 29;372:n71 [PMID: 33782057]
  30. Prev Vet Med. 2019 Apr 1;165:15-22 [PMID: 30851923]
  31. Front Microbiol. 2022 Feb 21;13:849667 [PMID: 35265063]
  32. Foodborne Pathog Dis. 2019 Apr;16(4):298-306 [PMID: 30767657]
  33. Diagn Microbiol Infect Dis. 2014 Aug;79(4):463-7 [PMID: 24923210]
  34. J Glob Antimicrob Resist. 2019 Sep;18:269-278 [PMID: 31201995]
  35. Bull World Health Organ. 2019 Jan 1;97(1):3-3A [PMID: 30618457]
  36. J Vet Med Sci. 2014 May;76(5):685-92 [PMID: 24476850]
  37. Transl Anim Sci. 2020 Nov 27;4(4):txaa211 [PMID: 33409466]
  38. J Food Prot. 2010 Feb;73(2):376-9 [PMID: 20132687]
  39. Can J Vet Res. 2008;72(2):181-7 [PMID: 18505208]
  40. J Food Prot. 2017 Mar 28;:716-724 [PMID: 28350183]
  41. Antimicrob Resist Infect Control. 2021 Aug 30;10(1):128 [PMID: 34462014]
  42. Food Control. 2020 Jan;107:106756 [PMID: 31902975]
  43. Zoonoses Public Health. 2015 Apr;62 Suppl 1:70-8 [PMID: 25430661]
  44. J Vet Med Sci. 2020 May 20;82(5):653-660 [PMID: 32224554]
  45. Microbiol Spectr. 2018 Jul;6(4): [PMID: 30027887]
  46. Int J Food Microbiol. 2021 Mar 2;341:109049 [PMID: 33493824]
  47. Saudi J Biol Sci. 2017 May;24(4):808-812 [PMID: 28490950]
  48. J Glob Antimicrob Resist. 2018 Dec;15:32-35 [PMID: 29935331]
  49. Curr Opin Microbiol. 2021 Dec;64:152-158 [PMID: 34739920]
  50. Health Sci Rep. 2020 Jul 27;3(3):e178 [PMID: 32728636]
  51. Clin Microbiol Infect. 2012 Mar;18(3):268-81 [PMID: 21793988]
  52. Antimicrob Resist Infect Control. 2019 Oct 16;8:156 [PMID: 31636899]
  53. JAC Antimicrob Resist. 2022 Apr 19;4(2):dlac038 [PMID: 35449721]
  54. BMC Public Health. 2020 Feb 11;20(1):213 [PMID: 32046713]
  55. Front Vet Sci. 2021 Jan 28;7:612993 [PMID: 33585602]
  56. Emerg Infect Dis. 2002 Feb;8(2):175-80 [PMID: 11897070]
  57. Antibiotics (Basel). 2020 Oct 26;9(11): [PMID: 33114588]
  58. J Med Microbiol. 2018 Oct;67(10):1457-1466 [PMID: 30113307]
  59. Vet World. 2021 Dec;14(12):3216-3223 [PMID: 35153415]
  60. BMC Vet Res. 2019 Apr 4;15(1):106 [PMID: 30947723]
  61. Environ Sci Pollut Res Int. 2019 Nov;26(33):34521-34530 [PMID: 31643014]
  62. Front Vet Sci. 2022 Mar 29;9:816279 [PMID: 35425826]
  63. Vet Microbiol. 2020 Jul;246:108725 [PMID: 32605745]
  64. Microbiol Spectr. 2018 Mar;6(2): [PMID: 29600770]
  65. Trop Anim Health Prod. 2019 Jul;51(6):1405-1411 [PMID: 30734887]
  66. Antibiotics (Basel). 2021 Jan 31;10(2): [PMID: 33572528]
  67. Epidemiol Infect. 2015 Oct;143(14):3074-86 [PMID: 25778282]
  68. BMC Infect Dis. 2012 Apr 18;12:92 [PMID: 22512857]
  69. Int J Hyg Environ Health. 2014 Sep;217(7):785-95 [PMID: 24933419]
  70. Ann Clin Microbiol Antimicrob. 2021 Sep 4;20(1):60 [PMID: 34481499]
  71. Chemosphere. 2008 Jun;72(6):968-73 [PMID: 18485444]
  72. Antimicrob Agents Chemother. 2014 Nov;58(11):6501-7 [PMID: 25136011]
  73. PLoS One. 2010 Feb 26;5(2):e9440 [PMID: 20195474]
  74. Int J Food Microbiol. 2018 Feb 2;266:301-309 [PMID: 29275223]
  75. Int J Evid Based Healthc. 2015 Sep;13(3):147-53 [PMID: 26317388]
  76. Int Microbiol. 2017 Jun;20(2):85-93 [PMID: 28617526]
  77. Lett Appl Microbiol. 2020 Jul;71(1):78-85 [PMID: 31529721]
  78. Int J Environ Res Public Health. 2017 Jun 29;14(7): [PMID: 28661465]
  79. Infect Genet Evol. 2020 Nov;85:104534 [PMID: 32920195]
  80. Zoonoses Public Health. 2017 Mar;64(2):94-99 [PMID: 27152998]
  81. Zoonoses Public Health. 2016 Nov;63(7):569-576 [PMID: 26952244]
  82. Microb Drug Resist. 2019 Dec;25(10):1437-1442 [PMID: 31334682]
  83. Trop Anim Health Prod. 2010 Dec;42(8):1797-804 [PMID: 20661643]
  84. J Vet Med Sci. 2012 Sep;74(9):1163-9 [PMID: 22673721]
  85. J Infect Dev Ctries. 2013 Dec 15;7(12):922-8 [PMID: 24334938]
  86. Appl Environ Microbiol. 2015 Feb;81(3):812-20 [PMID: 25398864]
  87. J Antimicrob Chemother. 2015 Jul;70(7):2144-52 [PMID: 25755000]
  88. Southeast Asian J Trop Med Public Health. 2007 May;38(3):487-92 [PMID: 17877224]
  89. J Vet Med Sci. 2017 Mar 18;79(3):479-485 [PMID: 28123141]
  90. Appl Environ Microbiol. 2007 Dec;73(24):7906-11 [PMID: 17951438]
  91. Int J Food Microbiol. 2012 May 15;156(2):147-51 [PMID: 22497836]
  92. Trop Anim Health Prod. 2017 Jan;49(1):31-37 [PMID: 27664157]
  93. Appl Environ Microbiol. 2020 Dec 18;: [PMID: 33355096]
  94. J Epidemiol Community Health. 2013 Nov 1;67(11):974-8 [PMID: 23963506]
  95. J Glob Antimicrob Resist. 2014 Sep;2(3):162-167 [PMID: 27873723]
  96. Appl Environ Microbiol. 2016 Jun 13;82(13):3727-3735 [PMID: 27084016]
  97. BMC Infect Dis. 2009 Dec 15;9:204 [PMID: 20003464]
  98. Foodborne Pathog Dis. 2012 Nov;9(11):986-91 [PMID: 23067395]
  99. BMC Microbiol. 2016 Sep 09;16:208 [PMID: 27612880]
  100. J Food Prot. 2014 Jan;77(1):57-66 [PMID: 24405999]
  101. Int J Food Microbiol. 2016 Nov 7;236:115-22 [PMID: 27479779]
  102. Int J Food Microbiol. 2021 May 16;346:109164 [PMID: 33813365]
  103. BMC Public Health. 2019 Aug 19;19(1):1135 [PMID: 31426792]
  104. Front Vet Sci. 2019 Jun 21;6:174 [PMID: 31294033]
  105. JAC Antimicrob Resist. 2022 May 27;4(3):dlac054 [PMID: 35663829]
  106. Open Access Maced J Med Sci. 2019 Dec 20;7(24):4393-4398 [PMID: 32215101]

Word Cloud

Created with Highcharts 10.0.00%VietnamNTSresistanceAMRhumansanimalsenvironmentstudies95%CIOneHealthreviewmeta-analysisprevalenceantimicrobialstudysystematicacross89articlesfoundantimicrobialsimportantlevelshighesthealthyampicillinsulfamethoxazole-trimethoprimpooled = 002chloramphenicol-resistant< 0low-middle-incomecountryLMICprimaryfoodproducerhotspotrecognizedchallengesincemaytransferaimedapplyinvestigatephenotypicprofilescorrelationsantimicrobial-resistantthreecompartments:totalPubMedScienceDirectGoogleScholardatabasesretrievedqualitativesynthesisnon-typhoidalcommonbacterialspeciescompartments60/89Amongclassifiedcriticallyobservedquinolones3rdgenerationcephalosporinspenicillinsaminoglycosides55reportedciprofloxacinceftazidimegentamicinchloramphenicolused84730-9166560-7534240-4633250-42respectivelysignificantdifferencesexceptceftazidime-resistantχ = 829χ = 96501χ = 751p = 0Findingsmultiplemeta-regressionmodelsindicatedβ = 1887001Northβ = 0798047higherfractionregionsoutcomesplayrolebaselineinformationinvestigationfollow-upinterventionstrategiestacklegenerallycanadaptedLMICsintegratedfocusperspectiveAntimicrobialEnterobacteriaceaeMeta-analysisSystematic

Similar Articles

Cited By (9)