Switching the Mode of Drug Release from a Reaction-Coupled Low-Molecular-Weight Gelator System by Altering Its Reaction Pathway.

Willem E M Noteborn, Sandeepa K Vittala, Maria Broto Torredemer, Chandan Maity, Frank Versluis, Rienk Eelkema, Roxanne E Kieltyka
Author Information
  1. Willem E M Noteborn: Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands. ORCID
  2. Sandeepa K Vittala: Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands. ORCID
  3. Maria Broto Torredemer: Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands.
  4. Chandan Maity: Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZDelft, The Netherlands.
  5. Frank Versluis: Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZDelft, The Netherlands.
  6. Rienk Eelkema: Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZDelft, The Netherlands. ORCID
  7. Roxanne E Kieltyka: Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands. ORCID

Abstract

Low-molecular-weight hydrogels are attractive scaffolds for drug delivery applications because of their modular and facile preparation starting from inexpensive molecular components. The molecular design of the hydrogelator results in a commitment to a particular release strategy, where either noncovalent or covalent bonding of the drug molecule dictates its rate and mechanism. Herein, we demonstrate an alternative approach using a reaction-coupled gelator to tune drug release in a facile and user-defined manner by altering the reaction pathway of the low-molecular-weight gelator (LMWG) and drug components through an acylhydrazone-bond-forming reaction. We show that an off-the-shelf drug with a reactive handle, doxorubicin, can be covalently bound to the gelator through its ketone moiety when the addition of the aldehyde component is delayed from 0 to 24 h, or noncovalently bound with its addition at 0 h. We also examine the use of an l-histidine methyl ester catalyst to prepare the drug-loaded hydrogels under physiological conditions. Fitting of the drug release profiles with the Korsmeyer-Peppas model corroborates a switch in the mode of release consistent with the reaction pathway taken: increased covalent ligation drives a transition from a Fickian to a semi-Fickian mode in the second stage of release with a decreased rate. Sustained release of doxorubicin from the reaction-coupled hydrogel is further confirmed in an MTT toxicity assay with MCF-7 breast cancer cells. We demonstrate the modularity and ease of the reaction-coupled approach to prepare drug-loaded self-assembled hydrogels in situ with tunable mechanics and drug release profiles that may find eventual applications in macroscale drug delivery.

References

  1. Chem Commun (Camb). 2019 Sep 4;55(68):10154-10157 [PMID: 31389429]
  2. Chem Sci. 2018 May 21;9(23):5252-5259 [PMID: 29997880]
  3. Langmuir. 2019 May 21;35(20):6506-6521 [PMID: 31038973]
  4. Biomacromolecules. 2022 Jun 13;23(6):2624-2634 [PMID: 35543610]
  5. Soft Matter. 2012 Apr 7;8(13):3586-3595 [PMID: 23130084]
  6. Org Lett. 2015 Jan 16;17(2):274-7 [PMID: 25545888]
  7. Chemphyschem. 2021 Nov 4;22(21):2256-2261 [PMID: 34288310]
  8. ACS Appl Mater Interfaces. 2017 Apr 19;9(15):13056-13067 [PMID: 28357860]
  9. Chem Mater. 2019 Oct 8;31(19):7883-7897 [PMID: 31631941]
  10. Chem Sci. 2021 Feb 2;12(11):3958-3965 [PMID: 34163666]
  11. Chem Commun (Camb). 2020 Jul 2;56(53):7313-7316 [PMID: 32478344]
  12. Adv Mater. 2017 Mar;29(12): [PMID: 28117500]
  13. ACS Omega. 2020 Feb 20;5(8):4261-4269 [PMID: 32149256]
  14. Nat Protoc. 2014 Apr;9(4):977-88 [PMID: 24675737]
  15. Chem Sci. 2021 Jul 22;12(33):11197-11203 [PMID: 34522317]
  16. Soft Matter. 2020 Nov 18;16(44):10158-10168 [PMID: 33035281]
  17. J Am Chem Soc. 2006 Mar 8;128(9):3038-43 [PMID: 16506785]
  18. Soft Matter. 2021 Aug 5;17(30):7221-7226 [PMID: 34286796]
  19. Langmuir. 2020 Feb 18;36(6):1574-1584 [PMID: 31984750]
  20. J Am Chem Soc. 2020 Jan 8;142(1):448-455 [PMID: 31825602]
  21. Chem Commun (Camb). 2018 Dec 18;55(1):47-50 [PMID: 30507994]
  22. Nanoscale. 2019 Mar 14;11(11):5030-5037 [PMID: 30839985]
  23. J Mater Chem B. 2021 Apr 21;9(15):3326-3334 [PMID: 33881438]
  24. Adv Healthc Mater. 2021 Jun;10(11):e2001903 [PMID: 33929772]
  25. Angew Chem Int Ed Engl. 2020 Mar 9;59(11):4434-4442 [PMID: 31943628]
  26. J Am Chem Soc. 2010 Dec 22;132(50):17707-9 [PMID: 21121607]
  27. Chem Commun (Camb). 2019 Dec 5;55(98):14852-14855 [PMID: 31769450]
  28. ACS Appl Mater Interfaces. 2018 May 23;10(20):17004-17017 [PMID: 29757611]
  29. Org Lett. 2020 Aug 7;22(15):6035-6040 [PMID: 32790427]
  30. J Am Chem Soc. 2015 Nov 18;137(45):14236-9 [PMID: 26502267]
  31. Angew Chem Int Ed Engl. 2022 May 23;61(22):e202201791 [PMID: 35274796]
  32. ChemNanoMat. 2018 Aug;4(8):853-859 [PMID: 31032176]
  33. Sci Rep. 2019 Mar 7;9(1):3862 [PMID: 30846795]
  34. ACS Nano. 2021 Feb 23;15(2):3015-3025 [PMID: 33576622]
  35. Soft Matter. 2017 Mar 1;13(9):1914-1919 [PMID: 28186211]
  36. Chem Commun (Camb). 2020 Sep 22;56(75):11046-11049 [PMID: 32810197]
  37. Nanoscale. 2014 Apr 7;6(7):3474-82 [PMID: 24548933]
  38. Adv Sci (Weinh). 2020 Feb 05;7(7):1902487 [PMID: 32274297]
  39. Chem Commun (Camb). 2019 Feb 7;55(13):1947-1950 [PMID: 30681089]
  40. Nanoscale. 2016 Jun 16;8(24):12152-61 [PMID: 26892588]
  41. Nanoscale. 2014 Nov 7;6(21):12849-55 [PMID: 25227567]
  42. Biomacromolecules. 2020 Mar 9;21(3):1171-1178 [PMID: 32053359]
  43. ACS Nano. 2022 Jun 28;16(6):9546-9558 [PMID: 35639629]
  44. Soft Matter. 2021 Oct 6;17(38):8590-8594 [PMID: 34545895]
  45. J Am Chem Soc. 2006 Dec 13;128(49):15602-3 [PMID: 17147365]
  46. Chem Rev. 2015 Dec 23;115(24):13165-307 [PMID: 26646318]
  47. Chemistry. 2018 Jun 7;24(32):8071-8075 [PMID: 29663537]
  48. Langmuir. 2012 Dec 4;28(48):16664-70 [PMID: 23116236]
  49. Org Biomol Chem. 2014 Sep 7;12(33):6292-6 [PMID: 25026045]
  50. Biomacromolecules. 2021 Jun 14;22(6):2393-2407 [PMID: 33973785]
  51. ACS Appl Bio Mater. 2019 Apr 4;2(5):2116-2124 [PMID: 34136760]
  52. Chem Res Toxicol. 2014 Jul 21;27(7):1081-91 [PMID: 24911545]
  53. Nat Chem. 2013 May;5(5):433-7 [PMID: 23609096]
  54. ACS Nano. 2020 Aug 25;14(8):10083-10094 [PMID: 32806082]
  55. ACS Appl Mater Interfaces. 2019 Jun 5;11(22):19743-19750 [PMID: 31081327]
  56. Langmuir. 2020 Oct 20;36(41):12107-12120 [PMID: 32988205]
  57. J Mater Chem B. 2022 May 4;10(17):3242-3247 [PMID: 35437539]
  58. Chem Commun (Camb). 2020 Mar 10;56(20):3015-3018 [PMID: 32048648]

MeSH Term

Drug Liberation
Drug Delivery Systems
Hydrogels
Doxorubicin

Chemicals

Hydrogels
Doxorubicin

Word Cloud

Created with Highcharts 10.0.0drugreleasehydrogelsreaction-coupledgelatorreactiondeliveryapplicationsfacilemolecularcomponentscovalentratedemonstrateapproachpathwaydoxorubicinboundaddition0hpreparedrug-loadedprofilesmodeLow-molecular-weightattractivescaffoldsmodularpreparationstartinginexpensivedesignhydrogelatorresultscommitmentparticularstrategyeithernoncovalentbondingmoleculedictatesmechanismHereinalternativeusingtuneuser-definedmanneralteringlow-molecular-weightLMWGacylhydrazone-bond-formingshowoff-the-shelfreactivehandlecancovalentlyketonemoietyaldehydecomponentdelayed24noncovalentlyalsoexamineusel-histidinemethylestercatalystphysiologicalconditionsFittingKorsmeyer-Peppasmodelcorroboratesswitchconsistenttaken:increasedligationdrivestransitionFickiansemi-FickiansecondstagedecreasedSustainedhydrogelconfirmedMTTtoxicityassayMCF-7breastcancercellsmodularityeaseself-assembledsitutunablemechanicsmayfindeventualmacroscaleSwitchingModeDrugReleaseReaction-CoupledLow-Molecular-WeightGelatorSystemAlteringReactionPathway

Similar Articles

Cited By