Advances in machine learning applications for cardiovascular 4D flow MRI.

Eva S Peper, Pim van Ooij, Bernd Jung, Adrian Huber, Christoph Gräni, Jessica A M Bastiaansen
Author Information
  1. Eva S Peper: Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
  2. Pim van Ooij: Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands.
  3. Bernd Jung: Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
  4. Adrian Huber: Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
  5. Christoph Gräni: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
  6. Jessica A M Bastiaansen: Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

Abstract

Four-dimensional flow magnetic resonance imaging (MRI) has evolved as a non-invasive imaging technique to visualize and quantify blood flow in the heart and vessels. Hemodynamic parameters derived from 4D flow MRI, such as net flow and peak velocities, but also kinetic energy, turbulent kinetic energy, viscous energy loss, and wall shear stress have shown to be of diagnostic relevance for cardiovascular diseases. 4D flow MRI, however, has several limitations. Its long acquisition times and its limited spatio-temporal resolutions lead to inaccuracies in velocity measurements in small and low-flow vessels and near the vessel wall. Additionally, 4D flow MRI requires long post-processing times, since inaccuracies due to the measurement process need to be corrected for and parameter quantification requires 2D and 3D contour drawing. Several machine learning (ML) techniques have been proposed to overcome these limitations. Existing scan acceleration methods have been extended using ML for image reconstruction and ML based super-resolution methods have been used to assimilate high-resolution computational fluid dynamic simulations and 4D flow MRI, which leads to more realistic velocity results. ML efforts have also focused on the automation of other post-processing steps, by learning phase corrections and anti-aliasing. To automate contour drawing and 3D segmentation, networks such as the U-Net have been widely applied. This review summarizes the latest ML advances in 4D flow MRI with a focus on technical aspects and applications. It is divided into the current status of fast and accurate 4D flow MRI data generation, ML based post-processing tools for phase correction and vessel delineation and the statistical evaluation of blood flow.

Keywords

References

  1. Sci Rep. 2022 Sep 26;12(1):16004 [PMID: 36163357]
  2. J Magn Reson Imaging. 2020 Feb;51(2):472-480 [PMID: 31257647]
  3. Magn Reson Med. 1999 Apr;41(4):793-9 [PMID: 10332856]
  4. Magn Reson Med. 2021 Aug;86(2):804-819 [PMID: 33720465]
  5. Int J Comput Assist Radiol Surg. 2022 Jan;17(1):199-210 [PMID: 34403045]
  6. J Magn Reson Imaging. 2018 Oct;48(4):1147-1158 [PMID: 29638024]
  7. Front Cardiovasc Med. 2022 Jan 24;8:769927 [PMID: 35141290]
  8. Front Cardiovasc Med. 2019 Apr 09;6:41 [PMID: 31024934]
  9. Magn Reson Med. 2022 Oct;88(4):1937-1947 [PMID: 35649198]
  10. J Magn Reson Imaging. 2015 Feb;41(2):376-85 [PMID: 24677253]
  11. Magn Reson Med. 2018 Jun;79(6):3055-3071 [PMID: 29115689]
  12. J Cardiovasc Magn Reson. 2019 Jan 7;21(1):1 [PMID: 30612574]
  13. Ann Biomed Eng. 2020 Oct;48(10):2484-2493 [PMID: 32524379]
  14. Magn Reson Med. 2016 Jul;76(1):191-6 [PMID: 26258402]
  15. J Magn Reson Imaging. 2010 Mar;31(3):711-8 [PMID: 20187217]
  16. Magn Reson Med. 2023 Feb;89(2):800-811 [PMID: 36198027]
  17. PLoS One. 2015 Sep 29;10(9):e0138365 [PMID: 26418553]
  18. Magn Reson Med. 2007 Dec;58(6):1182-95 [PMID: 17969013]
  19. Comput Methods Programs Biomed. 2020 Dec;197:105729 [PMID: 33007592]
  20. J Magn Reson Imaging. 2016 Apr;43(4):833-42 [PMID: 26417641]
  21. Magn Reson Med. 2008 Nov;60(5):1218-31 [PMID: 18956416]
  22. Comput Biol Med. 2022 Feb;141:105147 [PMID: 34929463]
  23. J Cardiovasc Magn Reson. 2020 Jan 20;22(1):7 [PMID: 31959203]
  24. J Magn Reson Imaging. 2015 Oct;42(4):870-86 [PMID: 25708923]
  25. Magn Reson Med. 2013 Jan;69(1):200-10 [PMID: 22411739]
  26. J Magn Reson Imaging. 2001 May;13(5):690-8 [PMID: 11329190]
  27. Sci Rep. 2021 May 13;11(1):10240 [PMID: 33986368]
  28. Magn Reson Med. 2003 Jan;49(1):193-7 [PMID: 12509838]
  29. Eur Radiol. 2022 Oct;32(10):7117-7127 [PMID: 35976395]
  30. J Magn Reson Imaging. 2003 Apr;17(4):499-506 [PMID: 12655592]
  31. Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):11144-11149 [PMID: 30322935]
  32. Int J Cardiol. 2021 May 15;331:316-321 [PMID: 33548381]
  33. JRSM Cardiovasc Dis. 2021 Feb 27;10:2048004021999900 [PMID: 33717471]
  34. Neural Netw. 2020 Jan;121:74-87 [PMID: 31536901]
  35. J R Soc Interface. 2006 Jun 22;3(8):415-27 [PMID: 16849270]
  36. Magn Reson Med. 2015 Oct;74(4):964-70 [PMID: 25302683]
  37. Magn Reson Med. 2020 Oct;84(4):2204-2218 [PMID: 32167203]
  38. Magn Reson Imaging. 2016 Sep;34(7):940-50 [PMID: 26707849]
  39. Magn Reson Med. 2009 Sep;62(3):706-16 [PMID: 19585603]
  40. J Magn Reson Imaging. 2012 Sep;36(3):543-60 [PMID: 22903655]
  41. J Magn Reson Imaging. 2015 Feb;41(2):505-16 [PMID: 24436246]
  42. J Magn Reson Imaging. 2015 Mar;41(3):738-46 [PMID: 24573992]
  43. Magn Reson Med. 1999 Nov;42(5):952-62 [PMID: 10542355]
  44. Eur Radiol. 2018 Oct;28(10):4066-4076 [PMID: 29666995]
  45. J Magn Reson Imaging. 2021 Sep;54(3):777-786 [PMID: 33629795]
  46. PLoS One. 2016 Sep 26;11(9):e0163316 [PMID: 27669568]
  47. J Am Coll Cardiol. 2001 Oct;38(4):1123-9 [PMID: 11583892]
  48. J Magn Reson Imaging. 2023 Jan;57(1):191-203 [PMID: 35506525]
  49. J Magn Reson Imaging. 2012 May;35(5):1162-8 [PMID: 22271330]
  50. Nat Methods. 2021 Feb;18(2):203-211 [PMID: 33288961]
  51. Eur Radiol. 2022 Aug;32(8):5669-5678 [PMID: 35175379]
  52. Eur Radiol. 2021 Oct;31(10):7231-7241 [PMID: 33783570]
  53. Magn Reson Med. 2017 Aug;78(2):472-483 [PMID: 27529745]
  54. Magn Reson Med. 1996 Nov;36(5):800-3 [PMID: 8916033]
  55. Radiology. 2022 Mar;302(3):584-592 [PMID: 34846200]
  56. J Magn Reson Imaging. 2008 Sep;28(3):655-63 [PMID: 18777557]
  57. Cardiovasc Diagn Ther. 2014 Apr;4(2):193-206 [PMID: 24834415]
  58. J Cardiovasc Magn Reson. 2015 Aug 10;17:72 [PMID: 26257141]
  59. J Magn Reson Imaging. 1995 Sep-Oct;5(5):529-34 [PMID: 8574036]
  60. Magn Reson Med. 2003 Nov;50(5):1031-42 [PMID: 14587014]
  61. Magn Reson Med. 2015 Mar;73(3):1216-27 [PMID: 24753241]
  62. Magn Reson Med. 2022 Jul;88(1):449-463 [PMID: 35381116]
  63. Magn Reson Med. 1999 Nov;42(5):970-8 [PMID: 10542357]
  64. Nature. 2015 Feb 26;518(7540):529-33 [PMID: 25719670]
  65. J Clin Neurosci. 2021 Aug;90:60-67 [PMID: 34275582]
  66. J Cardiovasc Magn Reson. 2015 Oct 05;17:87 [PMID: 26438074]
  67. Magn Reson Med. 2020 Oct;84(4):2231-2245 [PMID: 32270549]
  68. Front Artif Intell. 2022 Aug 12;5:928181 [PMID: 36034591]
  69. J Cardiovasc Magn Reson. 2018 Sep 14;20(1):65 [PMID: 30217194]
  70. AJNR Am J Neuroradiol. 2005 Apr;26(4):743-9 [PMID: 15814915]

Word Cloud

Created with Highcharts 10.0.0flow4DMRIMLlearningimagingenergycardiovascularpost-processingmachinemagneticresonancebloodvesselsalsokineticwalllimitationslongtimesinaccuraciesvelocityvesselrequires3DcontourdrawingmethodsbasedphaseapplicationsFour-dimensionalevolvednon-invasivetechniquevisualizequantifyheartHemodynamicparametersderivednetpeakvelocitiesturbulentviscouslossshearstressshowndiagnosticrelevancediseaseshoweverseveralacquisitionlimitedspatio-temporalresolutionsleadmeasurementssmalllow-flownearAdditionallysinceduemeasurementprocessneedcorrectedparameterquantification2DSeveraltechniquesproposedovercomeExistingscanaccelerationextendedusingimagereconstructionsuper-resolutionusedassimilatehigh-resolutioncomputationalfluiddynamicsimulationsleadsrealisticresultseffortsfocusedautomationstepscorrectionsanti-aliasingautomatesegmentationnetworksU-NetwidelyappliedreviewsummarizeslatestadvancesfocustechnicalaspectsdividedcurrentstatusfastaccuratedatagenerationtoolscorrectiondelineationstatisticalevaluationAdvancesartificialintelligencefour-dimensional

Similar Articles

Cited By