Investigation of d-Amino Acid-Based Surfactants and Nanocomposites with Gold and Silica Nanoparticles as against Multidrug-Resistant Bacteria Agents.

Jae Ho Shim, Sungduk Gwak, Byung Kook Ahn, Hogyu Han, Yeonsun Hong, Ok Sarah Shin
Author Information
  1. Jae Ho Shim: Department of Anatomy, Korea University College of Medicine, Seoul 02842, Korea. ORCID
  2. Sungduk Gwak: Department of Chemistry, Korea University, Seoul 02841, Korea. ORCID
  3. Byung Kook Ahn: Department of Anatomy, Korea University College of Medicine, Seoul 02842, Korea.
  4. Hogyu Han: Department of Chemistry, Korea University, Seoul 02841, Korea.
  5. Yeonsun Hong: Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York 14642, United States.
  6. Ok Sarah Shin: BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea.

Abstract

d-amino acid-based surfactants (d-AASs) were synthesized and their antimicrobial activity was evaluated. -α-lauroyl-d-arginine ethyl ester hydrochloride (d-LAE), d-proline dodecyl ester (d-PD), and d-alanine dodecyl ester (d-AD) were found to have antibacterial activity against both Gram-positive and -negative bacteria, but less efficacy against Gram-negative bacteria. For these reasons, combining antimicrobial agents with nanoparticles is a promising technique for improving their antibacterial properties to eliminate drug-resistant pathogens. d-LAE coated on gold (AuNP) and silica (SiNP) nanoparticles has more efficient antibacterial activity than that of d-LAE alone. However, unlike d-LAE, d-PD has enhanced antibacterial activity upon being coated on AuNP. The antibacterial d-AASs and their nanocomposites with nanoparticles were synthesized in an environmentally friendly manner and are expected to be valuable new antimicrobial agents against multidrug-resistant (MDR) pathogens.

References

  1. Mol Oncol. 2012 Apr;6(2):155-76 [PMID: 22440008]
  2. Nanomaterials (Basel). 2020 Feb 24;10(2): [PMID: 32102280]
  3. Spectrochim Acta A Mol Biomol Spectrosc. 2006 Jul;64(4):987-1001 [PMID: 16458063]
  4. Nanomaterials (Basel). 2016 Apr 14;6(4): [PMID: 28335198]
  5. Biophys J. 2001 Sep;81(3):1475-85 [PMID: 11509361]
  6. Crit Rev Biotechnol. 2012 Jun;32(2):143-71 [PMID: 22074402]
  7. Nat Rev Drug Discov. 2004 Oct;3(10):853-62 [PMID: 15459676]
  8. Adv Colloid Interface Sci. 2016 Feb;228:17-39 [PMID: 26792016]
  9. mBio. 2016 Sep 27;7(5): [PMID: 27677793]
  10. J Bacteriol. 1995 Feb;177(4):998-1007 [PMID: 7860612]
  11. Antimicrob Agents Chemother. 2004 Aug;48(8):3127-9 [PMID: 15273131]
  12. J Phys Chem B. 2007 Feb 15;111(6):1470-7 [PMID: 17243664]
  13. GMS Hyg Infect Control. 2017 Apr 10;12:Doc05 [PMID: 28451516]
  14. J Phys Chem B. 2009 Mar 12;113(10):3169-78 [PMID: 19708268]
  15. Acta Biomater. 2018 Mar 1;68:261-271 [PMID: 29307796]
  16. Biomaterials. 2017 Feb;116:69-81 [PMID: 27914268]
  17. Appl Environ Microbiol. 2009 May;75(9):2973-6 [PMID: 19270121]
  18. Biomaterials. 2016 Apr;85:142-51 [PMID: 26871890]
  19. Am J Clin Pathol. 1966 Apr;45(4):493-6 [PMID: 5325707]
  20. Lancet. 2020 Mar 28;395(10229):1054-1062 [PMID: 32171076]
  21. Antimicrob Agents Chemother. 2000 Dec;44(12):3317-21 [PMID: 11083634]
  22. J Food Sci Technol. 2018 Sep;55(9):3675-3682 [PMID: 30150827]
  23. Carbohydr Res. 2011 Apr 1;346(5):588-94 [PMID: 21316648]
  24. Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26 [PMID: 11259830]
  25. Int J Food Microbiol. 2020 Feb 16;315:108417 [PMID: 31715542]
  26. Antimicrob Agents Chemother. 1993 Jul;37(7):1393-9 [PMID: 8363364]
  27. J Med Chem. 2018 Nov 8;61(21):9442-9468 [PMID: 29920198]
  28. Bioconjug Chem. 2019 Mar 20;30(3):721-732 [PMID: 30669829]
  29. Int J Antimicrob Agents. 2004 Dec;24(6):536-47 [PMID: 15555874]
  30. Nanoscale. 2017 Jul 06;9(26):8970-8981 [PMID: 28443896]
  31. Can J Microbiol. 2021 Feb;67(2):119-137 [PMID: 32783775]
  32. Q Rev Biophys. 1977 Feb;10(1):1-34 [PMID: 327501]
  33. BMC Microbiol. 2016 Aug 22;16(1):192 [PMID: 27549081]
  34. ACS Omega. 2021 Nov 24;6(50):34501-34511 [PMID: 34963935]
  35. Indian J Med Res. 2019 Feb;149(2):97-106 [PMID: 31219074]
  36. Nat Rev Microbiol. 2005 Mar;3(3):238-50 [PMID: 15703760]
  37. J Colloid Interface Sci. 2005 Jun 15;286(2):536-42 [PMID: 15897068]
  38. J Mater Chem B. 2016 May 21;4(19):3292-3304 [PMID: 32263264]
  39. Biomaterials. 2017 Feb;118:27-50 [PMID: 27940381]
  40. Cancer Res. 1993 Jul 1;53(13):3052-7 [PMID: 8319212]
  41. Chem Rev. 2003 May;103(5):1793-873 [PMID: 12744694]
  42. ACS Biomater Sci Eng. 2019 Sep 9;5(9):4764-4775 [PMID: 33448819]
  43. Biochemistry. 1999 Mar 30;38(13):4018-27 [PMID: 10194314]
  44. Front Microbiol. 2020 Oct 16;11:582779 [PMID: 33178164]
  45. Nature. 2004 Dec 16;432(7019):846-54 [PMID: 15602550]
  46. Microb Biotechnol. 2020 May;13(3):722-737 [PMID: 31758659]

Word Cloud

Created with Highcharts 10.0.0antibacterialactivityd-LAEantimicrobialesternanoparticlesd-AASssynthesizeddodecyld-PDbacteriaagentspathogenscoatedAuNPd-aminoacid-basedsurfactantsevaluated-α-lauroyl-d-arginineethylhydrochlorided-prolined-alanined-ADfoundGram-positive-negativelessefficacyGram-negativereasonscombiningpromisingtechniqueimprovingpropertieseliminatedrug-resistantgoldsilicaSiNPefficientaloneHoweverunlikeenhanceduponnanocompositesenvironmentallyfriendlymannerexpectedvaluablenewmultidrug-resistantMDRInvestigationd-AminoAcid-BasedSurfactantsNanocompositesGoldSilicaNanoparticlesMultidrug-ResistantBacteriaAgents

Similar Articles

Cited By