Time-locked auditory cortical responses in the high-gamma band: A window into primary auditory cortex.

Jonathan Z Simon, Vrishab Commuri, Joshua P Kulasingham
Author Information
  1. Jonathan Z Simon: Department of Electrical and Computer Engineering, University of Maryland, College Park, College Park, MD, United States.
  2. Vrishab Commuri: Department of Electrical and Computer Engineering, University of Maryland, College Park, College Park, MD, United States.
  3. Joshua P Kulasingham: Department of Electrical Engineering, Linköping University, Linköping, Sweden.

Abstract

Primary auditory cortex is a critical stage in the human auditory pathway, a gateway between subcortical and higher-level cortical areas. Receiving the output of all subcortical processing, it sends its output on to higher-level cortex. Non-invasive physiological recordings of primary auditory cortex using electroencephalography (EEG) and magnetoencephalography (MEG), however, may not have sufficient specificity to separate responses generated in primary auditory cortex from those generated in underlying subcortical areas or neighboring cortical areas. This limitation is important for investigations of effects of top-down processing (e.g., selective-attention-based) on primary auditory cortex: higher-level areas are known to be strongly influenced by top-down processes, but subcortical areas are often assumed to perform strictly bottom-up processing. Fortunately, recent advances have made it easier to isolate the neural activity of primary auditory cortex from other areas. In this perspective, we focus on time-locked responses to stimulus features in the high gamma band (70-150 Hz) and with early cortical latency (∼40 ms), intermediate between subcortical and higher-level areas. We review recent findings from physiological studies employing either repeated simple sounds or continuous speech, obtaining either a frequency following response (FFR) or temporal response function (TRF). The potential roles of top-down processing are underscored, and comparisons with invasive intracranial EEG (iEEG) and animal model recordings are made. We argue that MEG studies employing continuous speech stimuli may offer particular benefits, in that only a few minutes of speech generates robust high gamma responses from bilateral primary auditory cortex, and without measurable interference from subcortical or higher-level areas.

Keywords

References

  1. J Acoust Soc Am. 1990 Sep;88(3):1403-11 [PMID: 2229675]
  2. J Neurophysiol. 2009 Jul;102(1):349-59 [PMID: 19439675]
  3. J Neurophysiol. 2009 Oct;102(4):2358-74 [PMID: 19675285]
  4. J Neurosci. 2004 Feb 4;24(5):1159-72 [PMID: 14762134]
  5. Hear Res. 2013 Nov;305:57-73 [PMID: 23792076]
  6. Curr Biol. 2018 Dec 17;28(24):3976-3983.e5 [PMID: 30503620]
  7. J Neurophysiol. 2019 Dec 1;122(6):2372-2387 [PMID: 31596649]
  8. Neurobiol Lang (Camb). 2022;3(3):441-468 [PMID: 36909931]
  9. Curr Biol. 2015 Oct 5;25(19):2457-65 [PMID: 26412129]
  10. Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11854-9 [PMID: 22753470]
  11. Physiol Rev. 2004 Apr;84(2):541-77 [PMID: 15044682]
  12. J Neurophysiol. 2019 Aug 1;122(2):844-848 [PMID: 31268800]
  13. Front Syst Neurosci. 2018 Oct 31;12:56 [PMID: 30429778]
  14. Neuroimage. 2019 Dec;203:116185 [PMID: 31520743]
  15. Neuroimage. 2020 Jan 1;204:116253 [PMID: 31600592]
  16. J Neurophysiol. 1997 Nov;78(5):2438-54 [PMID: 9356395]
  17. Nat Commun. 2019 Nov 6;10(1):5036 [PMID: 31695046]
  18. J Acoust Soc Am. 1998 Nov;104(5):2935-55 [PMID: 9821339]
  19. Nat Neurosci. 2001 Nov;4(11):1131-8 [PMID: 11593234]
  20. Psychophysiology. 2012 Mar;49(3):322-34 [PMID: 22175821]
  21. eNeuro. 2021 Dec 23;8(6): [PMID: 34799409]
  22. Laryngoscope Investig Otolaryngol. 2017 Apr 12;2(4):147-156 [PMID: 28894834]
  23. Neuron. 2019 Dec 18;104(6):1195-1209.e3 [PMID: 31648900]
  24. eNeuro. 2018 Feb 9;5(1): [PMID: 29435487]
  25. Nat Rev Neurosci. 2012 May 18;13(6):407-20 [PMID: 22595786]
  26. J Neurophysiol. 2021 Jul 1;126(1):148-169 [PMID: 34077273]
  27. Curr Opin Physiol. 2020 Dec;18:25-31 [PMID: 33225119]
  28. J Neurophysiol. 2016 Nov 1;116(5):2356-2367 [PMID: 27605531]
  29. J Neurophysiol. 2002 Jan;87(1):516-27 [PMID: 11784767]
  30. Lang Cogn Neurosci. 2018 Jul 22;35(5):573-582 [PMID: 32656294]
  31. Elife. 2021 Feb 17;10: [PMID: 33594974]
  32. Neuroimage. 2021 Jul 15;235:118014 [PMID: 33794356]
  33. Neuroimage. 2020 Nov 15;222:117291 [PMID: 32835821]
  34. Nat Neurosci. 2003 Nov;6(11):1216-23 [PMID: 14583754]
  35. J Assoc Res Otolaryngol. 2018 Feb;19(1):83-97 [PMID: 28971333]
  36. Neuroimage. 2021 May 1;231:117866 [PMID: 33592244]
  37. Elife. 2017 Oct 10;6: [PMID: 28992445]
  38. Front Neurosci. 2022 Jul 22;16:915744 [PMID: 35942153]
  39. Nat Commun. 2016 Mar 24;7:11070 [PMID: 27009409]
  40. J Neurosci. 2021 Sep 22;41(38):8023-8039 [PMID: 34400518]

Grants

  1. P01 AG055365/NIA NIH HHS
  2. R01 DC019394/NIDCD NIH HHS

Word Cloud

Created with Highcharts 10.0.0auditoryareascortexsubcorticalprimaryhigher-levelcorticalprocessingresponsesresponsetop-downhighspeechoutputphysiologicalrecordingsEEGMEGmaygeneratedrecentmadegammastudiesemployingeithercontinuousfrequencyfollowingFFRPrimarycriticalstagehumanpathwaygatewayReceivingsendsNon-invasiveusingelectroencephalographymagnetoencephalographyhoweversufficientspecificityseparateunderlyingneighboringlimitationimportantinvestigationseffectsegselective-attention-basedcortex:knownstronglyinfluencedprocessesoftenassumedperformstrictlybottom-upFortunatelyadvanceseasierisolateneuralactivityperspectivefocustime-lockedstimulusfeaturesband70-150Hzearlylatency∼40msintermediatereviewfindingsrepeatedsimplesoundsobtainingtemporalfunctionTRFpotentialrolesunderscoredcomparisonsinvasiveintracranialiEEGanimalmodelarguestimuliofferparticularbenefitsminutesgeneratesrobustbilateralwithoutmeasurableinterferenceTime-lockedhigh-gammaband:windowenvelopemedialgeniculatebodyphaselocked

Similar Articles

Cited By