Stabilizing Buried Interface via Synergistic Effect of Fluorine and Sulfonyl Functional Groups Toward Efficient and Stable Perovskite Solar Cells.

Cheng Gong, Cong Zhang, Qixin Zhuang, Haiyun Li, Hua Yang, Jiangzhao Chen, Zhigang Zang
Author Information
  1. Cheng Gong: Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University, Chongqing, 400044, People's Republic of China.
  2. Cong Zhang: Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University, Chongqing, 400044, People's Republic of China.
  3. Qixin Zhuang: Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University, Chongqing, 400044, People's Republic of China.
  4. Haiyun Li: Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University, Chongqing, 400044, People's Republic of China.
  5. Hua Yang: Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, People's Republic of China.
  6. Jiangzhao Chen: Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University, Chongqing, 400044, People's Republic of China. jiangzhaochen@cqu.edu.cn.
  7. Zhigang Zang: Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University, Chongqing, 400044, People's Republic of China. zangzg@cqu.edu.cn.

Abstract

The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor Perovskite crystallization and incomplete conversion of PbI to Perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition. Herein, a buried interface stabilization strategy that relies on the synergy of fluorine (F) and sulfonyl (S=O) functional groups is proposed. A series of potassium salts containing halide and non-halogen anions are employed to modify SnO/Perovskite buried interface. Multiple chemical bonds including hydrogen bond, coordination bond and ionic bond are realized, which strengthens interfacial contact and defect passivation effect. The chemical interaction between modification molecules and Perovskite along with SnO heightens incessantly as the number of S=O and F augments. The chemical interaction strength between modifiers and Perovskite as well as SnO gradually increases with the increase in the number of S=O and F. The defect passivation effect is positively correlated with the chemical interaction strength. The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates. Compared with Cl, all non-halogen anions perform better in crystallization optimization, energy band regulation and defect passivation. The device with potassium bis (fluorosulfonyl) imide achieves a tempting efficiency of 24.17%.

Keywords

References

  1. Nanomicro Lett. 2022 Apr 19;14(1):108 [PMID: 35441280]
  2. J Am Chem Soc. 2009 May 6;131(17):6050-1 [PMID: 19366264]
  3. Science. 2020 Mar 20;367(6484):1352-1358 [PMID: 32193323]
  4. Nat Commun. 2015 Jul 20;6:7747 [PMID: 26190275]
  5. Adv Mater. 2022 Jul;34(27):e2110438 [PMID: 35255529]
  6. Adv Mater. 2021 Jan;33(3):e2007126 [PMID: 33296122]
  7. Nat Commun. 2018 Oct 26;9(1):4482 [PMID: 30367070]
  8. Adv Mater. 2022 Feb;34(8):e2106118 [PMID: 34862820]
  9. Nature. 2021 Oct;598(7881):444-450 [PMID: 34671136]
  10. Nanomicro Lett. 2021 Dec 2;14(1):7 [PMID: 34859318]
  11. Phys Rev Lett. 2002 Mar 4;88(9):095501 [PMID: 11864022]
  12. Adv Mater. 2020 Oct;32(43):e2003990 [PMID: 32954577]
  13. Nature. 2021 Apr;592(7854):381-385 [PMID: 33820983]
  14. Science. 2022 Jan 28;375(6579):434-437 [PMID: 35084976]
  15. Small Methods. 2021 Jun;5(6):e2100311 [PMID: 34927923]
  16. Inorg Chem. 2013 Aug 5;52(15):9019-38 [PMID: 23834108]
  17. ACS Appl Mater Interfaces. 2019 Oct 9;11(40):36727-36734 [PMID: 31525907]
  18. Nanomicro Lett. 2022 Aug 16;14(1):165 [PMID: 35974239]
  19. Adv Mater. 2017 Jun;29(23): [PMID: 28417505]
  20. Adv Mater. 2019 Jun;31(24):e1900390 [PMID: 31012204]
  21. Chem Soc Rev. 2019 Jul 15;48(14):3842-3867 [PMID: 31187791]
  22. Science. 2022 Jan 21;375(6578):302-306 [PMID: 35050659]
  23. Adv Mater. 2019 Sep;31(39):e1902902 [PMID: 31402565]
  24. Adv Mater. 2017 Dec;29(46): [PMID: 29044741]
  25. Angew Chem Int Ed Engl. 2022 Aug 26;61(35):e202206914 [PMID: 35713582]

Word Cloud

Created with Highcharts 10.0.0chemicalperovskitepassivationinteractioninterfacialcrystallizationinterfaceFS=Obonddefecteffectstrengthenergyburiedfunctionalgroupspotassiumnon-halogenanionsMultiplebondsSnOnumberBuriedSynergisticPerovskitedefectsbarriermainreasonsnonradiativerecombinationadditionpoorincompleteconversionPbIrestrictenhancementphotovoltaicperformancedevicesusingsequentialdepositionHereinstabilizationstrategyreliessynergyfluorinesulfonylproposedseriessaltscontaininghalideemployedmodifySnO/perovskiteincludinghydrogencoordinationionicrealizedstrengthenscontactmodificationmoleculesalongheightensincessantlyaugmentsmodifierswellgraduallyincreasesincreasepositivelycorrelatedkineticsregulatedcompromisewettabilitysubstratesComparedClperformbetteroptimizationbandregulationdevicebisfluorosulfonylimideachievestemptingefficiency2417%StabilizingInterfaceviaEffectFluorineSulfonylFunctionalGroupsTowardEfficientStableSolarCellsDefectsolarcells

Similar Articles

Cited By