Unified Principal Component Analysis for Sparse and Dense Functional Data under Spatial Dependency.

Haozhe Zhang, Yehua Li
Author Information
  1. Haozhe Zhang: Microsoft Corporation, Redmond, United States.
  2. Yehua Li: Department of Statistics, University of California, Riverside.

Abstract

We consider spatially dependent functional data collected under a geostatistics setting, where locations are sampled from a spatial point process. The functional response is the sum of a spatially dependent functional effect and a spatially independent functional nugget effect. Observations on each function are made on discrete time points and contaminated with measurement errors. Under the assumption of spatial stationarity and isotropy, we propose a tensor product spline estimator for the spatio-temporal covariance function. When a coregionalization covariance structure is further assumed, we propose a new functional principal component analysis method that borrows information from neighboring functions. The proposed method also generates nonparametric estimators for the spatial covariance functions, which can be used for functional kriging. Under a unified framework for sparse and dense functional data, infill and increasing domain asymptotic paradigms, we develop the asymptotic convergence rates for the proposed estimators. Advantages of the proposed approach are demonstrated through simulation studies and two real data applications representing sparse and dense functional data, respectively.

Keywords

References

  1. J Am Stat Assoc. 2016;111(514):772-786 [PMID: 28018013]
  2. J Am Stat Assoc. 2014 Aug 1;109(507):1205-1215 [PMID: 25368436]
  3. Biostatistics. 2010 Apr;11(2):177-94 [PMID: 20089508]
  4. J Am Stat Assoc. 2013 Dec 19;108(504): [PMID: 24376287]
  5. J Am Stat Assoc. 2009 Dec 1;104(488):1550-1561 [PMID: 20625442]
  6. Ann Stat. 2018 Aug;46(4):1383-1414 [PMID: 30214095]
  7. J Am Stat Assoc. 2010 Mar 1;105(489):390-400 [PMID: 20396628]
  8. Proc Math Phys Eng Sci. 2018 Dec;474(2220):20180400 [PMID: 30602929]

Grants

  1. R21 AG058198/NIA NIH HHS

Word Cloud

Created with Highcharts 10.0.0functionaldatacovariancespatiallyspatialeffectproposeddependentnuggetfunctionproposetensorproductspatio-temporalmethodfunctionsestimatorssparsedenseinfillasymptoticconsidercollectedgeostatisticssettinglocationssampledpointprocessresponsesumindependentObservationsmadediscretetimepointscontaminatedmeasurementerrorsassumptionstationarityisotropysplineestimatorcoregionalizationstructureassumednewprincipalcomponentanalysisborrowsinformationneighboringalsogeneratesnonparametriccanusedkrigingunifiedframeworkincreasingdomainparadigmsdevelopconvergenceratesAdvantagesapproachdemonstratedsimulationstudiestworealapplicationsrepresentingrespectivelyUnifiedPrincipalComponentAnalysisSparseDenseFunctionalDataSpatialDependencyestimationdimensiondeductionasymptoticssplines

Similar Articles

Cited By (1)