An optimized proteomics-based approach to estimate blood contamination and cellular heterogeneity of frozen placental tissue.

Laken Kruger, Guihua Yue, Alison Paquette, Sheela Sathyanarayana, Daniel A Enquobahrie, Theo K Bammler, James MacDonald, Qi Zhao, Bhagwat Prasad
Author Information
  1. Laken Kruger: Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.
  2. Guihua Yue: Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.
  3. Alison Paquette: Seattle Children's Research Institute, Seattle, WA, USA; University of Washington, Seattle, WA, USA.
  4. Sheela Sathyanarayana: Seattle Children's Research Institute, Seattle, WA, USA; University of Washington, Seattle, WA, USA.
  5. Daniel A Enquobahrie: University of Washington, Seattle, WA, USA.
  6. Theo K Bammler: University of Washington, Seattle, WA, USA.
  7. James MacDonald: University of Washington, Seattle, WA, USA.
  8. Qi Zhao: University of Tennessee Health Science Center, Memphis, TN, USA.
  9. Bhagwat Prasad: Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA. Electronic address: bhagwat.prasad@wsu.edu.

Abstract

INTRODUCTION: Archived human placental tissue specimens are vital for studying placenta pathophysiology and toxicology. Proteomics analysis of placental tissue provides mechanistic and translational information, but the highly perfused and heterogenous nature of the placenta creates confounding technical variability. In this study, we developed an optimized proteomics-based approach to address the technical variability of proteomics data by normalizing blood contamination and cellular heterogeneity of archived placenta samples.
METHODS: Placenta samples (n = 99) were homogenized, digested using trypsin, and analyzed by liquid chromatography mass-spectrometry. Label-free quantification (LFQ) intensities of the proteins were analyzed for their correlation with blood (albumin) and placenta (aromatase) markers. Proteins that positively correlated with albumin and negatively correlated with aromatase or vice versa were considered blood and placental proteins, respectively. Next, the cellular heterogeneity of individual placenta samples was evaluated by quantifying specific cellular markers of cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, fibroblasts, Hofbauer cells, and decidual cells.
RESULTS: We found that placental proteins were contaminated by 41 to 85% blood proteins. Analysis of cellular markers confirmed syncytiotrophoblasts as the major cell type in placenta (i.e., 41 ± 9% of all cell types). Two samples showed distinct cell compositions with higher levels of the extravillous trophoblasts and decidual cells.
DISCUSSION: In summary, the optimized proteomics-based approach to estimate blood contamination and cellular heterogeneity of placental tissues has the potential to address technical variability in placenta proteomics analysis, which can be extended to other highly perfused and heterogenous tissues.

Keywords

References

  1. Bioinformatics. 2012 Mar 15;28(6):882-3 [PMID: 22257669]
  2. Reprod Sci. 2021 Mar;28(3):801-818 [PMID: 33150487]
  3. Philos Trans R Soc Lond B Biol Sci. 2015 Mar 5;370(1663):20140066 [PMID: 25602070]
  4. Methods Enzymol. 2017;585:49-60 [PMID: 28109442]
  5. Anal Chem. 2014 Aug 19;86(16):8336-43 [PMID: 25083595]
  6. Reproduction. 2020 Dec;160(6):R155-R167 [PMID: 33112783]
  7. Proteomics. 2015 Apr;15(7):1316-25 [PMID: 25475432]
  8. Curr Environ Health Rep. 2022 Sep;9(3):490-501 [PMID: 35488174]
  9. Nat Protoc. 2016 Dec;11(12):2301-2319 [PMID: 27809316]
  10. Placenta. 2009 Mar;30 Suppl A:S83-9 [PMID: 19070895]
  11. Thromb Res. 2004;114(5-6):397-407 [PMID: 15507270]
  12. Environ Health Perspect. 2021 Sep;129(9):97003 [PMID: 34478338]
  13. Placenta. 2017 Nov;59:69-72 [PMID: 29108639]
  14. Placenta. 2014 Aug;35(8):645-54 [PMID: 24951174]
  15. Front Pharmacol. 2018 Sep 12;9:1027 [PMID: 30258364]
  16. Placenta. 2008 Feb;29(2):135-43 [PMID: 18222537]
  17. Front Immunol. 2018 Nov 15;9:2628 [PMID: 30498493]
  18. BMC Genomics. 2021 Jan 6;22(1):6 [PMID: 33407091]
  19. Prog Neurobiol. 2013 Feb-Mar;101-102:18-34 [PMID: 22743551]
  20. Proteomics. 2005 Jan;5(1):290-6 [PMID: 15672452]
  21. Bioinformatics. 2014 May 15;30(10):1431-9 [PMID: 24451622]
  22. Cell Res. 2018 Aug;28(8):819-832 [PMID: 30042384]
  23. Steroids. 2015 Nov;103:11-22 [PMID: 26435077]
  24. J Mol Histol. 2022 Apr;53(2):199-214 [PMID: 34264436]
  25. Biol Reprod. 2022 Mar 19;106(3):551-567 [PMID: 35040930]
  26. Nat Methods. 2016 Sep;13(9):731-40 [PMID: 27348712]
  27. Drug Metab Dispos. 2020 Sep;48(9):735-741 [PMID: 32591415]
  28. Elife. 2018 Sep 07;7: [PMID: 30192227]
  29. Nature. 2016 Sep 14;537(7620):347-55 [PMID: 27629641]
  30. J Korean Med Sci. 2015 Jun;30(6):770-8 [PMID: 26028931]
  31. Annu Rev Cell Dev Biol. 2015;31:523-52 [PMID: 26443191]

Grants

  1. UH3 OD023271/NIH HHS
  2. UG3 OD023271/NIH HHS
  3. P30 ES007033/NIEHS NIH HHS
  4. K99 HD096112/NICHD NIH HHS
  5. R01 HL109977/NHLBI NIH HHS
  6. R00 HD096112/NICHD NIH HHS

MeSH Term

Pregnancy
Female
Humans
Placenta
Aromatase
Proteomics
Trophoblasts

Chemicals

Aromatase

Word Cloud

Created with Highcharts 10.0.0placentaplacentalbloodcellularheterogeneitycontaminationsamplesproteinstissuetechnicalvariabilityoptimizedproteomics-basedapproachproteomicsmarkerscellscellanalysishighlyperfusedheterogenousaddressPlacentaanalyzedalbuminaromatasecorrelatedsyncytiotrophoblastsextravilloustrophoblastsdecidualestimatetissuesINTRODUCTION:ArchivedhumanspecimensvitalstudyingpathophysiologytoxicologyProteomicsprovidesmechanistictranslationalinformationnaturecreatesconfoundingstudydevelopeddatanormalizingarchivedMETHODS:n = 99homogenizeddigestedusingtrypsinliquidchromatographymass-spectrometryLabel-freequantificationLFQintensitiescorrelationProteinspositivelynegativelyviceversaconsideredrespectivelyNextindividualevaluatedquantifyingspecificcytotrophoblastsfibroblastsHofbauerRESULTS:foundcontaminated4185%Analysisconfirmedmajortypeie41 ± 9%typesTwoshoweddistinctcompositionshigherlevelsDISCUSSION:summarypotentialcanextendedfrozenAlbuminCellularSyncytiotrophoblastTissue

Similar Articles

Cited By