IgG antibody response to pneumococcal-conjugated vaccine (Prevenar®13) in children with immunodeficiency disorders.

Marta Garrido-Jareño, José Miguel Sahuquillo-Arce, Héctor Rodríguez-Vega, Carmen Lloret-Sos, Ana Gil-Brusola, José Luis López-Hontangas, María Nuñez-Beltran, Jordi Tortosa-Carreres, José Ángel García-García, Lourdes Cordón, Leonor Puchades-Carrasco, Carmen Carreras-Gil de Santivañes, Antonio Pineda-Lucena, Javier Pemán-García
Author Information
  1. Marta Garrido-Jareño: Drug Discovery Unit, Health Research Institute Hospital La Fe, Valencia, Spain. marta.garrido@ucv.es. ORCID
  2. José Miguel Sahuquillo-Arce: Microbiology Department, University and Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell, 106 Torre A 3ª Planta, 46026, Valencia, Spain.
  3. Héctor Rodríguez-Vega: Paediatric Department, University and Polytechnic Hospital La Fe, Valencia, Spain.
  4. Carmen Lloret-Sos: Microbiology Department, University and Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell, 106 Torre A 3ª Planta, 46026, Valencia, Spain.
  5. Ana Gil-Brusola: Microbiology Department, University and Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell, 106 Torre A 3ª Planta, 46026, Valencia, Spain.
  6. José Luis López-Hontangas: Microbiology Department, University and Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell, 106 Torre A 3ª Planta, 46026, Valencia, Spain.
  7. María Nuñez-Beltran: Immunology Department, University and Polytechnic Hospital La Fe, Valencia, Spain.
  8. Jordi Tortosa-Carreres: Medical Analysis Department, University and Polytechnic Hospital La Fe, Valencia, Spain.
  9. José Ángel García-García: Valencian Institute of Pathology, Catholic University of Valencia, Valencia, Spain.
  10. Lourdes Cordón: Hematology Research Group, Health Research Institute Hospital La Fe, Valencia, Spain.
  11. Leonor Puchades-Carrasco: Drug Discovery Unit, Health Research Institute Hospital La Fe, Valencia, Spain.
  12. Carmen Carreras-Gil de Santivañes: Paediatric Department, University and Polytechnic Hospital La Fe, Valencia, Spain.
  13. Antonio Pineda-Lucena: Molecular Therapeutics Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain.
  14. Javier Pemán-García: Microbiology Department, University and Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell, 106 Torre A 3ª Planta, 46026, Valencia, Spain.

Abstract

Measurement of anti-pneumococcal capsular polysaccharides (anti-PnPs) IgG titers is an important tool in the immunologic assessment of patients with suspected immunodeficiency disorders (ID) to reduce the morbi-mortality and minimize severe infections. Retrospectively, we studied the relationship among anti-PnPs IgG response to 3 doses of Prevenar®13, levels of immune system components, leukocyte populations, and clinical data in children with ID. Serum samples were collected at least 4 weeks post vaccination. Subsequently, multi-serotype enzyme-linked immunosorbent assay (ELISA) was performed. Eighty-seven children (under 12 years) were enrolled. Primary immunodeficiency disorder (PID) was the most common disorder (45) followed by possible immunodeficiency disorder (POID) (19), secondary immunodeficiency disorder (SID) (15), and mixed immunodeficiency disorder (MID) (8). The median age was 3 (1.50-5.33) years, 65% of patients were male. Deficient production of anti-PnPs IgG (titer ≤ 50 mg/L) was detected in 47 patients (54%), especially in the MID group, all of them under immunosuppressive therapy. In PCV13 responders, the mean of leukocyte population levels was higher with statistically significance differences in CD4 + /CD8 + T lymphocytes (p = 0.372, p = 0.014) and CD56 + /CD16 + NK (p = 0.016). Patients with previous bone marrow transplantation were the worst PCV13 responders. Pneumococcal IgG antibody titers (post-vaccination) along with clinical and analytical markers represented.

Keywords

References

  1. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A et al (2020) Human inborn errors of immunity: 2019 update on the classification from the international union of immunological societies expert committee. J Clin Immunol 40(1):24–64. https://doi.org/10.1007/s10875-019-00737-x [DOI: 10.1007/s10875-019-00737-x]
  2. Modell V, Knaus M, Modell F, Roifman C, Orange J, Notarangelo LD (2014) Global overview of primary immunodeficiencies: a report from Jeffrey modell centers worldwide focused on diagnosis, treatment, and discovery. Immunol Res 60(1):132–144. https://doi.org/10.1007/s12026-014-8498-z [DOI: 10.1007/s12026-014-8498-z]
  3. Brodszki N, Frazer-Abel A, Grumach AS, Kirschfink M, Litzman J, Perez E et al (2020) European society for immunodeficiencies (ESID) and European reference network on rare primary immunodeficiency, autoinflammatory and autoimmune diseases (ERN RITA) complement guideline: deficiencies, diagnosis, and management. J Clin Immunol 40(4):576–591. https://doi.org/10.1007/s10875-020-00754-1 [DOI: 10.1007/s10875-020-00754-1]
  4. Resnick ES, Moshier EL, Godbold JH, Cunningham-Rundles C (2012) Morbidity and mortality in common variable immune deficiency over 4 decades. Blood 119(7):9. https://doi.org/10.1182/blood-2011-09-377945 [DOI: 10.1182/blood-2011-09-377945]
  5. van Wilder P, Odnoletkova I, Mouline M, de Vries E (2021) Immunoglobulin replacement therapy is critical and cost-effective in increasing life expectancy and quality of life in patients suffering from common variable immunodeficiency disorders (CVID): A health-economic assessment. PLoS ONE 16(3):e0247941. https://doi.org/10.1371/journal.pone.0247941 [DOI: 10.1371/journal.pone.0247941]
  6. Chinn IK, Orange JS (2019) Immunodeficiency disorders. Pediatr Rev 40(5):229–242. https://doi.org/10.1542/pir.2017-0308 [DOI: 10.1542/pir.2017-0308]
  7. Capolunghi F, Cascioli S, Giorda E, Rosado MM, Plebani A, Auriti C et al (2008) CpG drives human transitional b cells to terminal differentiation and production of natural antibodies. J Immunol 180(2):800–808. https://doi.org/10.4049/jimmunol.180.2.800 [DOI: 10.4049/jimmunol.180.2.800]
  8. Oliveira JB, Fleisher TA (2010) Laboratory evaluation of primary immunodeficiencies. J Allergy Clin Immunol 125(2):S297–S305. https://doi.org/10.1016/j.jaci.2009.08.043 [DOI: 10.1016/j.jaci.2009.08.043]
  9. Pulvirenti F, Milito C, Cavaliere FM, Mezzaroma I, Cinetto F, Quinti I (2020) IGA antibody induced by immunization with pneumococcal polysaccharides is a prognostic tool in common variable immune deficiencies. Front Immunol 11:1283. https://doi.org/10.3389/fimmu.2020.01283 [DOI: 10.3389/fimmu.2020.01283]
  10. Cavaliere FM, Milito C, Martini H, Schlesier M, Dräger R, Schütz K et al (2013) Quantification of IgM and IgA anti-pneumococcal capsular polysaccharides by a new ELISA assay: a valuable diagnostic and prognostic tool for common variable immunodeficiency. J Clin Immunol 33(4):838–846. https://doi.org/10.1007/s10875-012-9856-z [DOI: 10.1007/s10875-012-9856-z]
  11. Conley ME, Dobbs AK, Farmer DM, Kilic S, Paris K, Grigoriadou S et al (2009) Primary B cell immunodeficiencies: comparisons and contrasts. Annu Rev Immunol 27:199–227. https://doi.org/10.1146/annurev.immunol.021908.132649 [DOI: 10.1146/annurev.immunol.021908.132649]
  12. Álvarez García FJ, Cilleruelo Ortega MJ, Álvarez Aldeán J, Garcés-Sánchez M, Garrote Llanos E, Iofrío de Arce A et al (2022) Immunization schedule of the pediatric spanish association: 2022 recommendations. Anales de Pediatría (English Edition) 96(1):59.e1-59.e10. https://doi.org/10.1016/j.anpede.2021.11.002 [DOI: 10.1016/j.anpede.2021.11.002]
  13. Kersseboom R, Brooks A, Weemaes C (2011) Educational paper: syndromic forms of primary immunodeficiency. Eur J Pediatr 170(3):295–308. https://doi.org/10.1007/s00431-011-1396-7 [DOI: 10.1007/s00431-011-1396-7]
  14. Schauer U, Stemberg F, Rieger CHL, Büttner W, Borte M, Schubert S et al (2003) Levels of antibodies specific to tetanus toxoid, Haemophilus influenzae type b, and pneumococcal capsular polysaccharide in healthy children and adults. Clin Vaccine Immunol 10(2):202–207. https://doi.org/10.1128/CDLI.10.2.202-207.2003 [DOI: 10.1128/CDLI.10.2.202-207.2003]
  15. Parker AR, Allen S, Harding S (2016) Concentration of anti-pneumococcal capsular polysaccharide IgM, IgG and IgA specific antibodies in adult blood donors. Pract Lab Med 5:1–5. https://doi.org/10.1016/j.plabm.2016.02.004 [DOI: 10.1016/j.plabm.2016.02.004]
  16. Jang JH, Woo SD, Lee Y, Shin YS, Ye YM, Park HS (2021) Establishment of reference intervals of serum immunoglobulins in healthy korean adults. Allergy Asthma Immunol Res 13(4):671–674. https://doi.org/10.4168/aair.2021.13.4.671 [DOI: 10.4168/aair.2021.13.4.671]
  17. Tembe N, Joaquim O, Alfai E, Sitoe N, Viegas E, Macovela E et al (2014) Reference values for clinical laboratory parameters in young adults in Maputo, Mozambique. PLoS ONE 9(5):e97391 [DOI: 10.1371/journal.pone.0097391]
  18. Das Gupta A, Ochani Z (2006) Single platform enumeration of lymphocyte subsets in healthy Indians aged between 18 and 49 years. Cytometry B Clin Cytom 70:361–362 [DOI: 10.1002/cyto.b.20113]
  19. Tosato F, Bucciol G, Pantano G, Putti MC, Sanzari MC, Basso G et al (2015) Lymphocytes subsets reference values in childhood: lymphocytes subsets reference values in childhood. Cytometry 87(1):81–85. https://doi.org/10.1002/cyto.a.22520 [DOI: 10.1002/cyto.a.22520]
  20. Garcia-Prat M, Vila-Pijoan G, Martos Gutierrez S, Gala Yerga G, García Guantes E, Martínez-Gallo M et al (2018) Age-specific pediatric reference ranges for immunoglobulins and complement proteins on the Optilite™ automated turbidimetric analyzer. J Clin Lab Anal 32(6):e22420. https://doi.org/10.1002/jcla.22420 [DOI: 10.1002/jcla.22420]
  21. Hu BT, Yu X, Jones TR, Kirch C, Harris S, Hildreth SW et al (2005) Approach to validating an opsonophagocytic assay for Streptococcus pneumoniae. Clin Vaccine Immunol 12(2):287–295. https://doi.org/10.1128/CDLI.12.2.287-295.2005 [DOI: 10.1128/CDLI.12.2.287-295.2005]
  22. Jódar L, Butler J, Carlone G, Dagan R, Goldblatt D, Käyhty H et al (2003) Serological criteria for evaluation and licensure of new pneumococcal conjugate vaccine formulations for use in infants. Vaccine 21(23):3265–3272. https://doi.org/10.1016/S0264-410X(03)00230-5 [DOI: 10.1016/S0264-410X(03)00230-5]
  23. LaFon DC, Nahm MH (2018) Measuring immune responses to pneumococcal vaccines. J Immunol Methods 461:37–43. https://doi.org/10.1016/j.jim.2018.08.002 [DOI: 10.1016/j.jim.2018.08.002]
  24. Boyle JM, Buckley RH (2007) Population prevalence of diagnosed primary immunodeficiency diseases in the United States. J Clin Immunol 27(5):497–502. https://doi.org/10.1007/s10875-007-9103-1 [DOI: 10.1007/s10875-007-9103-1]
  25. Abolhassani H, Azizi G, Sharifi L, Yazdani R, Mohsenzadegan M, Delavari S et al (2020) Global systematic review of primary immunodeficiency registries. Expert Rev Clin Immunol 16(7):717–732. https://doi.org/10.1080/1744666X.2020.1801422 [DOI: 10.1080/1744666X.2020.1801422]
  26. Robbins A, Bahuaud M, Hentzien M, Maestraggi Q, Barbe C, Giusti D et al (2021) The 13-valent pneumococcal conjugate vaccine elicits serological response and lasting protection in selected patients with primary humoral immunodeficiency. Front Immunol 12:697128. https://doi.org/10.3389/fimmu.2021.697128 [DOI: 10.3389/fimmu.2021.697128]
  27. Pittet LF, Posfay-Barbe KM (2021) Vaccination of immune compromised children—an overview for physicians. Eur J Pediatr 180(7):2035–2047. https://doi.org/10.1007/s00431-021-03997-1 [DOI: 10.1007/s00431-021-03997-1]
  28. Froneman C, Kelleher P, José RJ (2021) Pneumococcal vaccination in immunocompromised hosts: an update. Vaccines 9(6):536. https://doi.org/10.3390/vaccines9060536 [DOI: 10.3390/vaccines9060536]
  29. Le Ng X, Alikhan M, Stark JM, Mosquera RA, Shahrukh Hashmi S, Gonzales T et al (2019) Comparison of pneumococcal vaccination response in children with sickle cell disease: HbSS and HbSC. Allergol Immunopathol 47(6):564–569. https://doi.org/10.1016/j.aller.2019.04.003 [DOI: 10.1016/j.aller.2019.04.003]
  30. Kuronuma K, Takahashi H (2019) Immunogenicity of pneumococcal vaccines in comorbid autoimmune and chronic respiratory diseases. Hum Vaccin Immunother 15(4):859–862. https://doi.org/10.1080/21645515.2018.1564443 [DOI: 10.1080/21645515.2018.1564443]
  31. van Aalst M, Langedijk AC, Spijker R, de Bree GJ, Grobusch MP, Goorhuis A (2018) The effect of immunosuppressive agents on immunogenicity of pneumococcal vaccination: a systematic review and meta-analysis. Vaccine 36(39):5832–5845. https://doi.org/10.1016/j.vaccine.2018.07.039 [DOI: 10.1016/j.vaccine.2018.07.039]
  32. Erguven M, Kaya B, Hamzah OY, Tufan F (2011) Evaluation of immune response to hepatitis a vaccination and vaccine safety in juvenile idiopathic arthritis. J Chin Med Assoc 74(5):205–208. https://doi.org/10.1016/j.jcma.2011.03.004 [DOI: 10.1016/j.jcma.2011.03.004]
  33. Aikawa NE, Campos LM, Goldenstein-Schainberg C, Saad CG, Ribeiro AC, Bueno C et al (2013) Effective seroconversion and safety following the pandemic influenza vaccination (anti-H1N1) in patients with juvenile idiopathic arthritis. Scand J Rheumatol 42(1):34–40. https://doi.org/10.3109/03009742.2012.709272 [DOI: 10.3109/03009742.2012.709272]
  34. van den Bossche WBL, Rykov K, Teodosio C, ten Have BLEF, Knobben BAS, Sietsma MS et al (2018) Flow cytometric assessment of leukocyte kinetics for the monitoring of tissue damage. Clin Immunol 197:224–230. https://doi.org/10.1016/j.clim.2018.09.014 [DOI: 10.1016/j.clim.2018.09.014]
  35. Blanchard-Rohner G (2021) Vaccination in children with autoimmune disorders and treated with various immunosuppressive regimens: a comprehensive review and practical guide. Front Immunol 2(12):711637. https://doi.org/10.3389/fimmu.2021.711637 [DOI: 10.3389/fimmu.2021.711637]
  36. Liang F, Loré K (2016) Local innate immune responses in the vaccine adjuvant-injected muscle. Clin Trans Immunol 5(4):e74. https://doi.org/10.1038/cti.2016.19 [DOI: 10.1038/cti.2016.19]
  37. Zimmermann P, Curtis N (2019) Factors that influence the immune response to vaccination. Clin Microbiol Rev 32(2):e00084-e118. https://doi.org/10.1128/CMR.00084-18 [DOI: 10.1128/CMR.00084-18]
  38. Gonzalez-Rodriguez AP, Contesti J, Huergo-Zapico L, Lopez-Soto A, Fernández-Guizán A, Acebes-Huerta A et al (2010) Prognostic significance of CD8 and CD4 T cells in chronic lymphocytic leukemia. Leuk Lymphoma 51(10):1829–1836. https://doi.org/10.3109/10428194.2010.503820 [DOI: 10.3109/10428194.2010.503820]
  39. Furuya Y, Kirimanjeswara GS, Roberts S, Racine R, Wilson-Welder J, Sanfilippo AM et al (2017) Defective anti-polysaccharide IgG vaccine responses in IgA deficient mice. Vaccine 35(37):4997–5005. https://doi.org/10.1016/j.vaccine.2017.07.071 [DOI: 10.1016/j.vaccine.2017.07.071]
  40. Schroeder HW, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125(2):S41–S52. https://doi.org/10.1016/j.jaci.2009.09.046 [DOI: 10.1016/j.jaci.2009.09.046]
  41. Zen Y (2020) Pathological characteristics and diagnosis of IgG4-related disease. La Presse Médicale 49(1):104014. https://doi.org/10.1016/j.lpm.2020.104014 [DOI: 10.1016/j.lpm.2020.104014]
  42. Maslinska M, Dmowska-Chalaba J, Jakubaszek M (2022) The role of IgG4 in autoimmunity and rheumatic diseases. Front Immunol 25(12):787422. https://doi.org/10.3389/fimmu.2021.787422 [DOI: 10.3389/fimmu.2021.787422]
  43. Castagnoli R, Delmonte OM, Calzoni E, Notarangelo LD (2019) Hematopoietic stem cell transplantation in primary immunodeficiency diseases: current status and future perspectives. Front Pediatr 7:295. https://doi.org/10.3389/fped.2019.00295 [DOI: 10.3389/fped.2019.00295]
  44. Trampert DC, Hubers LM, van de Graaf SFJ, Beuers U (1864) 2018 On the role of IgG4 in inflammatory conditions: lessons for IgG4-related disease. Biochimica et Biophysica Acta (BBA) 4:1401–1409. https://doi.org/10.1016/j.bbadis.2017.07.038 [DOI: 10.1016/j.bbadis.2017.07.038]
  45. Sánchez-Ramón S, Bermúdez A, González-Granado LI, Rodríguez-Gallego C, Sastre A, Soler-Palacín P et al (2019) Primary and secondary immunodeficiency diseases in oncohaematology: warning signs, diagnosis, and management. Front Immunol 10:586. https://doi.org/10.3389/fimmu.2019.00586 [DOI: 10.3389/fimmu.2019.00586]
  46. Olsson RF, Hagelberg S, Schiller B, Ringdén O, Truedsson L, Åhlin A (2016) Allogeneic hematopoietic stem cell transplantation in the treatment of human C1q deficiency: the Karolinska experience. Transplantation 100(6):1356–1362. https://doi.org/10.1097/TP.0000000000000975 [DOI: 10.1097/TP.0000000000000975]

MeSH Term

Child, Preschool
Female
Humans
Male
Antibodies, Bacterial
Antibody Formation
Heptavalent Pneumococcal Conjugate Vaccine
Immunoglobulin G
Pneumococcal Vaccines
Retrospective Studies
Streptococcus pneumoniae
Infant

Chemicals

Antibodies, Bacterial
Heptavalent Pneumococcal Conjugate Vaccine
Immunoglobulin G
Pneumococcal Vaccines

Word Cloud

Created with Highcharts 10.0.0immunodeficiencyIgGdisorderanti-PnPstiterspatientsdisorderslevelschildrenPCV13p = 0IDresponse3Prevenar®13leukocytepopulationsclinicalMIDrespondersantibodyMeasurementanti-pneumococcalcapsularpolysaccharidesimportanttoolimmunologicassessmentsuspectedreducemorbi-mortalityminimizesevereinfectionsRetrospectivelystudiedrelationshipamongdosesimmunesystemcomponentsdataSerumsamplescollectedleast4 weekspostvaccinationSubsequentlymulti-serotypeenzyme-linkedimmunosorbentassayELISAperformedEighty-seven12 yearsenrolledPrimaryPIDcommon45followedpossiblePOID19secondarySID15mixed8medianage150-533years65%maleDeficientproductiontiter ≤ 50 mg/Ldetected4754%especiallygroupimmunosuppressivetherapymeanpopulationhigherstatisticallysignificancedifferencesCD4 + /CD8 + Tlymphocytes372014CD56 + /CD16 + NK016PatientspreviousbonemarrowtransplantationworstPneumococcalpost-vaccinationalonganalyticalmarkersrepresentedpneumococcal-conjugatedvaccineAnti-PnPChildrenImmunoglobulinLymphocyte

Similar Articles

Cited By