Transcriptome analysis reveals synergistic modulation of E-cadherin/N-cadherin in hMSC aggregates chondrogenesis.
Xueping Wang, Yan Zhang, Jun Yang
Author Information
Xueping Wang: The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
Yan Zhang: State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
Jun Yang: The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China. yangjun106@nankai.edu.cn. ORCID
BACKGROUND: N-cadherin-mediated cell adhesion is a vital inductor for mesenchymal condensation in chondrogenesis. Recent studies have revealed the involvement of E-cadherin in enhancing the multipotency of mesenchymal stem cells (MSCs) and limb development; however, the signaling crosstalk of E/N-cadherin remains unclear. OBJECTIVE: This study aimed to explore the synergistic modulation of E/N-cadherin in the chondrogenic differentiation of MSC aggregates. METHODS: Human E/N-cadherin-functionalized (hE/N-cad-Fc) poly (lactic-co-glycolic acid) (PLGA) microparticles (hE/N-cad-PLGA) were incorporated into the human MSC (hMSC) aggregates to upregulate the expression of the corresponding endogenous cadherin. The chondrogenic differentiation of the hMSC aggregates was initiated by hE/N-cad-PLGA, controlling the release of transforming growth factor-β (TGF-β). A transcriptome analysis was used to assess differentially expressed genes (DEGs) modulated by hE/N-cad-Fc in hMSC aggregate chondrogenesis. Gene functions and signaling pathways were assessed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The associated biological pathways were assessed by a protein-protein interaction (PPI) network analysis, and the results were further confirmed by real-time quantitative PCR (qPCR) and western blotting. RESULTS: A total of 1083 DEGs, comprising 111 upregulated and 972 downregulated genes, were discovered to be related to the enhanced chondrogenic differentiation modulated by hE/N-cad-Fc. The GO and KEGG functional enrichment analyses revealed that hE/N-cad-Fc synergistically regulated the p53-related survival signaling pathway. PPI analysis revealed that mitogen-activated protein kinases (MAPK) caspase regulation is a core aspect of the chondrogenic differentiation process, confirmed by western blotting. CONCLUSION: To the best of our knowledge, our study is the first to reveal that the synergistic modulation of E/N-cadherin enhances the chondrogenic differentiation of hMSCs via the ERK1/2-p53 signaling axis.
Armesilla-Diaz A, Elvira G, Silva A (2009) p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells. Exp Cell Res 315:3598–3610. https://doi.org/10.1016/j.yexcr.2009.08.004
[DOI: 10.1016/j.yexcr.2009.08.004]
Battafarano G, Rossi M, De Martino V, Marampon F, Borro L, Secinaro A et al (2021) Strategies for bone regeneration: from graft to tissue engineering. Int J Mol Sci. https://doi.org/10.3390/ijms22031128
[DOI: 10.3390/ijms22031128]
Bhattacharjee M, Coburn J, Centola M, Murab S, Barbero A, Kaplan DL et al (2015) Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev 84:107–122. https://doi.org/10.1016/j.addr.2014.08.010
[DOI: 10.1016/j.addr.2014.08.010]
Cao L, Zhang Y, Qian M, Wang X, Shuai Q, Gao C et al (2019) Construction of multicellular aggregate by E-cadherin coated microparticles enhancing the hepatic specific differentiation of mesenchymal stem cells. Acta Biomater 95:382–394. https://doi.org/10.1016/j.actbio.2019.01.030
[DOI: 10.1016/j.actbio.2019.01.030]
Drosten M, Sum EY, Lechuga CG, Simon-Carrasco L, Jacob HK, Garcia-Medina R et al (2014) Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway. Proc Natl Acad Sci U S A 111:15155–15160. https://doi.org/10.1073/pnas.1417549111
[DOI: 10.1073/pnas.1417549111]
Fan L, Chen J, Tao Y, Heng BC, Yu J, Yang Z et al (2019) Enhancement of the chondrogenic differentiation of mesenchymal stem cells and cartilage repair by ghrelin. J Orthop Res 37:1387–1397. https://doi.org/10.1002/jor.24224
[DOI: 10.1002/jor.24224]
Gao C, Zhang Y, Xie J, Wang X, Cao L, Chen G et al (2020) VE-cadherin functionalized injectable PAMAM/HA hydrogel promotes endothelial differentiation of hMSCs and vascularization. Appl Mater Today 20:100690. https://doi.org/10.1016/j.apmt.2020.100690
[DOI: 10.1016/j.apmt.2020.100690]
Ge M, Sheng Y, Qi S, Cao L, Zhang Y, Yang J (2020) PLGA/chitosan-heparin composite microparticles prepared with microfluidics for the construction of hMSC aggregates. J Mater Chem B 8:9921–9932. https://doi.org/10.1039/D0TB01593H
[DOI: 10.1039/D0TB01593H]
He Y, de Castro LF, Shin MH, Dubois W, Yang HH, Jiang S et al (2015) p53 loss increases the osteogenic differentiation of bone marrow stromal cells. Stem Cells 33:1304–1319. https://doi.org/10.1002/stem.1925
[DOI: 10.1002/stem.1925]
Huynh NPT, Zhang B, Guilak F (2019) High-depth transcriptomic profiling reveals the temporal gene signature of human mesenchymal stem cells during chondrogenesis. FASEB J 33:358–372. https://doi.org/10.1096/fj.201800534R
[DOI: 10.1096/fj.201800534R]
Jain AK, Allton K, Iacovino M, Mahen E, Milczarek RJ, Zwaka TP et al (2012) p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biol 10:e1001268. https://doi.org/10.1371/journal.pbio.1001268
[DOI: 10.1371/journal.pbio.1001268]
Kaur H, Roy S (2021) Designing aromatic N-cadherin mimetic short-peptide-based bioactive scaffolds for controlling cellular behaviour. J Mater Chem B 9:5898–5913. https://doi.org/10.1039/d1tb00598g
[DOI: 10.1039/d1tb00598g]
Khan WS, Johnson DS, Hardingham TE (2010) The potential of stem cells in the treatment of knee cartilage defects. Knee 17:369–374. https://doi.org/10.1016/j.knee.2009.12.003
[DOI: 10.1016/j.knee.2009.12.003]
Kim MH, Kino-Oka M (2018) Bioprocessing strategies for pluripotent stem cells based on Waddington’s epigenetic landscape. Trends Biotechnol 36:89–104. https://doi.org/10.1016/j.tibtech.2017.10.006
[DOI: 10.1016/j.tibtech.2017.10.006]
Krishnan Y, Grodzinsky AJ (2018) Cartilage diseases. Matrix Biol 71–72:51–69. https://doi.org/10.1016/j.matbio.2018.05.005
[DOI: 10.1016/j.matbio.2018.05.005]
Lee-Thedieck C, Schertl P, Klein G (2022) The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 181:114069. https://doi.org/10.1016/j.addr.2021.114069
[DOI: 10.1016/j.addr.2021.114069]
Levine AJ, Puzio-Kuter AM, Chan CS, Hainaut P (2016) The role of the p53 protein in stem-cell biology and epigenetic regulation. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a026153
[DOI: 10.1101/cshperspect.a026153]
Ling Y, Zhang W, Wang P, Xie W, Yang W, Wang DA et al (2021) Three-dimensional (3D) hydrogel serves as a platform to identify potential markers of chondrocyte dedifferentiation by combining RNA sequencing. Bioact Mater 6:2914–2926. https://doi.org/10.1016/j.bioactmat.2021.02.018
[DOI: 10.1016/j.bioactmat.2021.02.018]
Liu Y, Zhang P, Huang W, Liu F, Long D, Peng W et al (2021) p53 promotes differentiation of cardiomyocytes from hipsc through wnt signaling-mediated mesendodermal differentiation. Int J Stem Cells. 14:410–422. https://doi.org/10.15283/ijsc21051
[DOI: 10.15283/ijsc21051]
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007
[DOI: 10.1093/nar/gkv007]
Robert AW, Marcon BH, Dallagiovanna B, Shigunov P (2020) Adipogenesis, osteogenesis, and chondrogenesis of human mesenchymal stem/stromal cells: a comparative transcriptome approach. Front Cell Dev Biol 8:561. https://doi.org/10.3389/fcell.2020.00561
[DOI: 10.3389/fcell.2020.00561]
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303
[DOI: 10.1101/gr.1239303]
Stains JP, Civitelli R (2005) Cell-cell interactions in regulating osteogenesis and osteoblast function. Birth Defects Res C Embryo Today 75:72–80. https://doi.org/10.1002/bdrc.20034
[DOI: 10.1002/bdrc.20034]
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613. https://doi.org/10.1093/nar/gky1131
[DOI: 10.1093/nar/gky1131]
Tao Y, Zhou X, Liang C, Li H, Han B, Li F et al (2015) TGF-beta3 and IGF-1 synergy ameliorates nucleus pulposus mesenchymal stem cell differentiation towards the nucleus pulposus cell type through MAPK/ERK signaling. Growth Factors 33:326–336. https://doi.org/10.3109/08977194.2015.1088532
[DOI: 10.3109/08977194.2015.1088532]
Wang X, Xu X, Zhang Y, An X, Zhang X, Chen G et al (2022) Duo cadherin-functionalized microparticles synergistically induce chondrogenesis and cartilage repair of stem cell aggregates. Adv Healthc Mater. https://doi.org/10.1002/adhm.202200246
[DOI: 10.1002/adhm.202200246]
Wu GS (2004) The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol Ther 3:156–161. https://doi.org/10.4161/cbt.3.2.614
[DOI: 10.4161/cbt.3.2.614]
Xu J, Zhu C, Zhang Y, Jiang N, Li S, Su Z et al (2013) hE-cadherin-Fc fusion protein coated surface enhances the adhesion and proliferation of human mesenchymal stem cells. Colloids Surf B Biointerfaces 109:97–102. https://doi.org/10.1016/j.colsurfb.2013.03.042
[DOI: 10.1016/j.colsurfb.2013.03.042]
Xu Y, Wang YQ, Wang AT, Yu CY, Luo Y, Liu RM et al (2020) Effect of CD44 on differentiation of human amniotic mesenchymal stem cells into chondrocytes via Smad and ERK signaling pathways. Mol Med Rep 21:2357–2366. https://doi.org/10.3892/mmr.2020.11044
[DOI: 10.3892/mmr.2020.11044]
Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287. https://doi.org/10.1089/omi.2011.0118
[DOI: 10.1089/omi.2011.0118]
Zhang Y, Mao H, Qian M, Hu F, Cao L, Xu K et al (2016) Surface modification with E-cadherin fusion protein for mesenchymal stem cell culture. J Mater Chem B 4:4267–4277. https://doi.org/10.1039/c6tb00765a
[DOI: 10.1039/c6tb00765a]
Zhang L, Tang H, Xiahou Z, Zhang J, She Y, Zhang K et al (2022) Solid multifunctional granular bioink for constructing chondroid basing on stem cell spheroids and chondrocytes. Biofabrication. https://doi.org/10.1088//1758-5090//ac63ee
[DOI: 10.1088//1758-5090//ac63ee]