A multi-scale model explains oscillatory slowing and neuronal hyperactivity in Alzheimer's disease.

Christoffer G Alexandersen, Willem de Haan, Christian Bick, Alain Goriely
Author Information
  1. Christoffer G Alexandersen: Mathematical Institute, University of Oxford, Oxford, UK. ORCID
  2. Willem de Haan: Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
  3. Christian Bick: Mathematical Institute, University of Oxford, Oxford, UK. ORCID
  4. Alain Goriely: Mathematical Institute, University of Oxford, Oxford, UK. ORCID

Abstract

Alzheimer's disease is the most common cause of dementia and is linked to the spreading of pathological amyloid- and tau proteins throughout the brain. Recent studies have highlighted stark differences in how amyloid- and tau affect neurons at the cellular scale. On a larger scale, Alzheimer's patients are observed to undergo a period of early-stage neuronal hyperactivation followed by neurodegeneration and frequency slowing of neuronal oscillations. Herein, we model the spreading of both amyloid- and tau across a human connectome and investigate how the neuronal dynamics are affected by disease progression. By including the effects of both amyloid- and tau pathology, we find that our model explains AD-related frequency slowing, early-stage hyperactivation and late-stage hypoactivation. By testing different hypotheses, we show that hyperactivation and frequency slowing are not due to the topological interactions between different regions but are mostly the result of local neurotoxicity induced by amyloid- and tau protein.

Keywords

References

  1. Clin Neurophysiol. 2013 May;124(5):837-50 [PMID: 23098644]
  2. Chaos. 2015 Jan;25(1):013110 [PMID: 25637921]
  3. Neurobiol Aging. 2020 Sep;93:109-123 [PMID: 32278495]
  4. Phys Rev Lett. 1991 Nov 11;67(20):2753-2756 [PMID: 10044546]
  5. Cogn Neurodyn. 2015 Jun;9(3):291-304 [PMID: 25972978]
  6. Cogn Neurodyn. 2017 Feb;11(1):113-116 [PMID: 28174617]
  7. Ann Neurol. 2016 Aug;80(2):247-58 [PMID: 27323247]
  8. J Neurobiol. 1995 Mar;26(3):325-38 [PMID: 7775966]
  9. Brain. 2019 Apr 1;142(4):1051-1062 [PMID: 30847469]
  10. Alzheimers Dement. 2020 Mar 10;: [PMID: 32157811]
  11. Cell Rep. 2019 Dec 10;29(11):3592-3604.e5 [PMID: 31825838]
  12. J Nucl Med. 2019 Nov;60(11):1611-1621 [PMID: 30926651]
  13. Ann Neurol. 2019 Feb;85(2):229-240 [PMID: 30597624]
  14. Chaos. 2011 Jun;21(2):025111 [PMID: 21721789]
  15. J Neurophysiol. 2020 Feb 1;123(2):726-742 [PMID: 31774370]
  16. Brain. 2019 Jun 1;142(6):1723-1735 [PMID: 31009046]
  17. PLoS Comput Biol. 2014 Jul 31;10(7):e1003736 [PMID: 25078715]
  18. BMJ. 2009 Feb 05;338:b158 [PMID: 19196745]
  19. Neuron. 2012 Mar 22;73(6):1204-15 [PMID: 22445347]
  20. Nat Neurosci. 2019 Jan;22(1):47-56 [PMID: 30559469]
  21. Acta Neuropathol. 2017 May;133(5):717-730 [PMID: 28091722]
  22. PLoS One. 2012;7(2):e31302 [PMID: 22312444]
  23. Biol Cybern. 2016 Jun;110(2-3):171-92 [PMID: 27241189]
  24. Curr Opin Neurol. 2019 Apr;32(2):266-271 [PMID: 30724769]
  25. Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):8631-8636 [PMID: 28739891]
  26. Sci Rep. 2019 Sep 19;9(1):13592 [PMID: 31537873]
  27. Arch Med Sci. 2018 Aug 28;16(2):345-351 [PMID: 32190145]
  28. Alzheimers Res Ther. 2021 Jun 14;13(1):114 [PMID: 34127063]
  29. Science. 2008 Sep 19;321(5896):1686-9 [PMID: 18802001]
  30. Sci Rep. 2022 Mar 2;12(1):3459 [PMID: 35236888]
  31. Front Comput Neurosci. 2020 May 28;14:47 [PMID: 32547379]
  32. J R Soc Interface. 2019 Oct 31;16(159):20190356 [PMID: 31615329]
  33. Clin Neurophysiol. 2015 Mar;126(3):505-13 [PMID: 25091343]
  34. JAMA Neurol. 2019 Nov 01;76(11):1319-1329 [PMID: 31314895]
  35. Handb Clin Neurol. 2018;153:303-319 [PMID: 29887142]
  36. JAMA Neurol. 2019 Jul 15;: [PMID: 31305929]
  37. Brain. 2019 Jul 1;142(7):2096-2112 [PMID: 31211359]
  38. Clin EEG Neurosci. 2023 Jan;54(1):73-81 [PMID: 35188831]
  39. Nat Neurosci. 2008 Nov;11(11):1311-8 [PMID: 18931664]
  40. Neurobiol Dis. 2003 Aug;13(3):177-90 [PMID: 12901832]
  41. JAMA Neurol. 2016 Sep 1;73(9):1070-7 [PMID: 27454922]
  42. Neural Netw. 2011 Aug;24(6):631-45 [PMID: 21435838]
  43. Neuron. 2015 Mar 4;85(5):959-66 [PMID: 25704951]
  44. Neurobiol Aging. 2017 Sep;57:133-142 [PMID: 28646686]
  45. Cogn Neurodyn. 2016 Apr;10(2):121-33 [PMID: 27066150]
  46. Brain. 2017 Mar 1;140(3):748-763 [PMID: 28077397]
  47. Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10302-7 [PMID: 19497858]
  48. Neuroimage. 2017 May 15;152:538-550 [PMID: 28315461]
  49. Neurology. 2018 Jul 24;91(4):e313-e318 [PMID: 29959265]
  50. Nat Rev Neurosci. 2020 Jan;21(1):21-35 [PMID: 31780819]
  51. Sci Transl Med. 2020 Jan 1;12(524): [PMID: 31894103]
  52. J Alzheimers Dis. 2015;49(1):159-77 [PMID: 26444753]
  53. Neuropsychiatr Dis Treat. 2015 Oct 27;11:2779-91 [PMID: 26604762]
  54. Nat Neurosci. 2019 Jan;22(1):57-64 [PMID: 30559471]
  55. J Math Neurosci. 2020 May 27;10(1):9 [PMID: 32462281]
  56. J Neurophysiol. 1990 Jun;63(6):1477-98 [PMID: 2358887]
  57. PLoS Comput Biol. 2020 Oct 13;16(10):e1008267 [PMID: 33048932]
  58. Front Aging Neurosci. 2013 Oct 09;5:60 [PMID: 24130529]
  59. Neuron. 2020 Aug 5;107(3):417-435 [PMID: 32579881]
  60. PLoS One. 2013 Jul 11;8(7):e68792 [PMID: 23874766]
  61. PLoS Comput Biol. 2017 Sep 22;13(9):e1005707 [PMID: 28938009]
  62. Brain. 2021 Feb 12;144(1):310-324 [PMID: 33279949]
  63. Sci Transl Med. 2016 May 11;8(338):338ra66 [PMID: 27169802]
  64. Nat Commun. 2020 May 26;11(1):2612 [PMID: 32457389]
  65. Sci Transl Med. 2020 Mar 11;12(534): [PMID: 32161102]
  66. Neuron. 2017 Feb 8;93(3):533-541.e5 [PMID: 28111080]
  67. Front Comput Neurosci. 2019 Aug 13;13:54 [PMID: 31456676]
  68. Eur J Neurosci. 2020 Jul;52(2):2944-2961 [PMID: 31887242]
  69. Phys Rev Lett. 2018 Oct 12;121(15):158101 [PMID: 30362787]
  70. Transl Neurodegener. 2022 Feb 9;11(1):8 [PMID: 35139917]
  71. Neurobiol Aging. 2012 May;33(5):1008.e25-31 [PMID: 22118944]
  72. Phys Rev Lett. 2020 Sep 18;125(12):128102 [PMID: 33016724]
  73. Cereb Cortex. 1991 Jan-Feb;1(1):103-16 [PMID: 1822725]

MeSH Term

Humans
Alzheimer Disease
Amyloid beta-Peptides
Neurons
Brain
Connectome

Chemicals

Amyloid beta-Peptides

Word Cloud

Created with Highcharts 10.0.0amyloid-tauslowingdiseaseneuronalfrequencyAlzheimer'shyperactivationmodelspreadingbrainscaleearly-stageneurodegenerationdynamicsexplainsdifferentcommoncausedementialinkedpathologicalproteinsthroughoutRecentstudieshighlightedstarkdifferencesaffectneuronscellularlargerpatientsobservedundergoperiodfollowedoscillationsHereinacrosshumanconnectomeinvestigateaffectedprogressionincludingeffectspathologyfindAD-relatedlate-stagehypoactivationtestinghypothesesshowduetopologicalinteractionsregionsmostlyresultlocalneurotoxicityinducedproteinmulti-scaleoscillatoryhyperactivityAlzheimer’snetworkadaptationneuraloscillation

Similar Articles

Cited By